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1 INTRODUCTION 

To tylko wstępny szkic wprowadzenia. Trzeba go będzie ponownie zredagować, gdy cała książka będzie 

gotowa.  

1.1 What motivated us in writing this book? 

It is a usual engineering practice that the designing process of a new product starts from a blueprint supported 

by mathematical calculations. Both provide a mathematical warranty that the future functionality of the 

product will satisfy the expectations of its designer and user.  

In software engineering the situation is different. In the place of a blueprint and calculations, programmers 

(i.e., producers) are given an informal description of the future product in a natural language, like plain English 

or Polish. As a consequence, a bulk of the budget for product-development is spent on testing, i.e., removing 

errors introduced at the stage of coding. Since testing may only discover errors but never give a guarantee of 

their absence, the non-discovered bugs are passed to the user with an intention to be removed later under the 

name of “maintenance”. In several cases this practice led to spectacular catastrophes. Here are a few examples: 

Dobrze byłoby dodać przykłady bardziej współczesne ??? 

1. the death of six patients in  US hospitals as a result of a wrong computer-computations of radiation 

dosage (1985), 

2. the catastrophe of an American lander of the Venus planet (the 1980-ties), 

3. the catastrophe of an oil platform in a Norwegian fiord (1991), 

4. Airbus crash in Warsaw (1993)1, 

5. an overlooking of Lothar hurricane by German meteorological services (1999), 

6. a rounding error in Intel’s microprocessor (1995). 

Except these catastrophic situations the lack of mathematical backgrounds and tools in software engineering 

leads to high overruns of costs and realization time in software products. The following statistics concerns 

software products of a total value of 250 billion USD (see [1]): 

1. 88% of projects exceeded the planned realization time and/or budget, 

2. the average overrun of the assumed budget was 189%, 

3. the average overrun of assumed realization-time was 222%. 

It is also a well-known fact that every future user of a software application has to accept a disclaimer, like the 

following one: 

There is no warranty for the program, to the extent permitted by applicable law.  Except when otherwise 

stated in writing the copyright holders and/or other parties provide the program "as is" without warranty of 

any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability 

 

1 In this case, although the cause of the accident had its origin in the software, this error was not due to programmers, 

but to the aircraft engineers, who did not anticipate certain specific aerodynamic conditions that may occur during the 

landing of the aircraft. In effect, they passed a wrong specification to programmers. For this information, we am thankful 

to Jarosław Deminet. 
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and fitness for a particular purpose.  The entire risk as to the quality and performance of the program is with 

you.  Should the program prove defective, you assume the cost of all necessary servicing, repair, or correction. 

Is it thinkable that a producer of a car, a dishwasher, or a building could request such a disclaimer from his 

or her clients? Why then is the software industry an exception? 

In our opinion, the cause of this situation is a lack of such mathematical models and tools for software 

engineers that would guarantee the functional reliability of products based on the way they have been designed 

and manufactured. The lack of mathematical models for programming languages also affects user-manuals of 

these languages, which are usually incomplete, inconsistent, unreadable, and too long at the same time.  

Despite a spectacular progress of  IT technology during the last six decades, the quality of manuals has 

significantly deteriorated. A published in 1960 report on Algol 60 [5]) ― a language, which largely influenced 

several generations of programming languages  ― far surpassed today's manuals regarding not only the 

precision and the completeness of language descriptions but also their compactness.  

First, their syntax was described by generative Chomsky’s grammars rather than ― as today ― by (usually 

unclear) examples. 

Second, their semantics, although defined without any mathematical tools (they were not known at that 

time) was described with the use of well-defined technical concepts such as variable, block, variable-visibility, 

procedure, procedure-parameter, recursion. Ten years later, the manual of Pascal [56] was written in a similar 

style. 

Unfortunately, one cannot say the same about today’s manuals, where the authors do not distinguish 

expressions from instructions and instructions from declarations.  

The described situation is common not only for programming languages but also for many applications 

such as e.g., Content Management System Joomla! and Drupal. Their poor descriptions cause the growing 

popularity of support forums, where desperate users exchange their bitter experiences. Manuals are rarely 

used, because they are not only imprecise and incomplete but highly unreadable due to their language lacking 

conceptual apparatus, and to their volume. For instance, Algol 60 manual contained 237 pages and Pascal 

manual ― 166 pages, whereas in the case of Phyton [69] we have 696 pages, for Access [80] ― 952 pages 

and the manual of Delphi that was supposed to become the programming language of all times, exceeds 2000 

pages.  

The users’ forums are therefore filled up with questions like "Hey, does anyone know how to ...?", to which 

most frequently nobody answers. From our practice, for ten questions asked to such forums, in eight cases we 

only find similar questions asked by others, that only insures us in the feeling that we are not alone with our 

problems.  

1.2 Reverse the traditional order of things 

The problem of mathematically-provable program correctness appeared for the first time in a work of Alan 

Turing [78] published in conference proceedings On High-Speed Calculating Machines, which took place at 

Cambridge University in 1949. Later, for several decades, that subject was investigated usually under the 

name of proving program correctness, but the developed methods never became standard tools for software 

industry. Finally, all these efforts were abandoned what has been commented in 2016 by the authors of a 

monograph Deductive Software Verification [2]: 

For a long time, the term formal verification was almost synonymous with functional verification. In the 

last years, it became more and more clear that full functional verification is an elusive goal for almost all 

application scenarios. Ironically, this happened because of advances in verification technology: with the 

advent of verifiers, such as KeY, that mostly cover and precisely model industrial languages and that can 

handle realistic systems, it finally became obvious just how difficult and time-consuming the specification of 

the functionality of real systems is. Not verification, but specification is the real bottleneck in functional 

verification. 
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In our opinion, the failure of constructing practical system for proving or making programs correct has two 

sources.  

The first is a lack of mathematical semantics of existing programming languages that, in our opinion, is a 

consequence of the fact that in building a programming language, one starts from syntax and only later — if 

at all — define its semantics. The second source is similar, but concerns programs: one first writes a program 

and only then tries to make it correct, e.g. by testing or — rarely — by proving.  

In order to mathematically guarantee the correctness of programs written in a concrete language, one has 

to define — in the first place — a mathematical semantics of this language. Since 1970-ties it was rather clear 

for mathematicians that such semantics to be “practical” must be compositional, i.e., the meaning of a whole 

must be a composition of the meanings of its parts. Later such semantics were called denotational — the 

meaning of a program is its denotation — and for about two decades, researchers investigated the possibilities 

of defining denotational semantics for existing programming languages. Two most complete such semantics 

were written in 1980 for Ada [15] and for CHILL [36] in using a metalanguage VDM [14]. A little later, in 

1987, Andrzej Blikle described a denotational semantics of a subset of Pascal [24]. In this case the used 

metalanguage was MetaSoft [24], to a large extend based on VDM. 

Unfortunately, none of these attempts resulted in the creation of software-engineering tools that would be 

widely accepted by IT industry. In our opinion, this situation was an unavoidable consequence of the fact that 

historically syntaxes were coming on the table first, and only later, some researchers (but usually not their 

designers!) were trying to give them a mathematical meaning. In other words — the decision of how to 

describe preceded a reflection of what to describe.  

Two additional issues were discouraging practitioners and researchers to denotational models of 

programming languages. They were related to two mechanisms considered necessary in 1960-ties but ten 

years later almost totally abandoned. One was a common jump instruction goto, the other — specific 

procedures that may take themselves as parameters (Algol 60, see [5]). The former had led to continuations 

(see [75]), the latter to reflexive domains (see [74]).  

The second source of problems followed from an implicit assumption that in developing mathematically 

correct programs, the development of the code should precede the proofs of its correctness. Although this 

order is quite evident in mathematics — first a hypothesis, and then its proof — it is highly unusual for 

engineers, who should first perform all necessary calculations (the proof) and only then build their bridges or 

airplanes.   

The idea “first a program and its correctness proof later” seems not only irrational but also practically rather 

unfeasible for two reasons. 

First reason follows from a simple fact that a proof of a theorem is usually longer than the theorem. 

Consequently, proofs of program correctness may contain thousands, if not millions of lines, what makes 

“hand-made proofs” totally unrealistic. Additionally, automated proofs for “practical” languages were not 

possible due to the lack of formal semantics of these languages.  

However, even more critical problem seems to be the fact that programs, which are supposed to be proved 

correct, are usually not correct! Consequently, correctness proofs were regarded as methods of detecting errors 

in programs. This way of using program provers was an effect of a widely acceptable philosophy of software 

industry: first write a piece of code, and then pass it to testing department. The letters find bugs and return 

program to coding department, and so on. 

In this book we propose a reversal of two traditional ways of thinking and doing: 

1. In designing a programming language we first design its denotations, and only then we derive an 

adequate syntax for them. As we are going to show in Sec. Sec. 2.13 and 2.14, for languages built in 

this way there exist unique fully formalized denotational semantics. 

2. Programs are developed in using construction rules that guarantee their correctness. We do not need 

to prove programs correct since their correctness is implicit in the way we develop them. Of course, to 

develop sound program-construction rules for a programming language, this language must have a 

mathematical semantics. 
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To illustrate and analyse both these approaches we develop an experimental programming language Lingua, 

and a corresponding set of program-construction rules.  

Mathematically both — the denotations and the syntax of Lingua — constitute many-sorted algebras (Sec. 

2.12), and the associated semantics is a (unique) homomorphism from syntax to denotations. As turns out, 

there is a simple method — to a large extent, algorithmic — of deriving syntax from (the description of) 

denotations, and later the semantics for both of them.  

At the level of data structures Lingua includes booleans, integers, reals, texts, records, arrays, and their 

arbitrary combinations plus objects. It is also equipped with a relatively rich mechanism of user-definable data 

types on one hand, and object types, i.e., classes, on the other. Control structures available in Lingua include 

structural instructions and procedures with multi-recursion. The language is also equipped with an error-

reporting mechanisms.  

In annexes we show how to enrich our basic Lingua by the mechanisms of concurrency, SQL databases 

and polymorphic types. We also sketch a technique of writing compact and complete manuals for languages 

with denotational semantics.  

Of course, Lingua is not a complete programming language, since in such a case the book would become 

hardly readable. Our language is only supposed to illustrate our method which (hopefully) may be used in the 

future to design and implement a real programming language.  

Nevertheless, an interpreter of (this poor) Lingua has been written by a group of students attending a course 

given commonly by Andrzej Blikle and Alex Schubert at the Department of Mathematics, Informatics and 

Mechanics of Warsaw University in the academic years 2019/20 and 2020/21.   

Once we have a language with denotational semantics, we can define program-construction rules that 

guarantee the correctness of programs. This method was for the first time sketched in [21]. In this book it is 

applied to the programming mechanisms included in Lingua. Technically it consists in developing so-called 

metaprograms, that syntactically include their specifications. Program construction rules guarantee that if we 

compose two or more correct programs into a new program, or if we transform a correct program, we get a 

correct program again. The correctness proofs of programs are implicit in the way they are developed.  

1.3 What is in the book? 

We are deeply convinced that one can talk about programming in a precise and transparent way. We also 

believe that taking responsibility for their products by software engineers should be possible to the same extent 

as is today in the case of cars, bridges, or airplane designers. On the other hand, we are aware that the existing 

tools for software engineers do not allow them for the realization of this goal.  

As we mentioned already in the Sec. 1.1, the book contains many thoughts developed in the years 1960-

1990, but later abandoned. One of the teams developing these ideas was working in the Institute of Computer 

Science of the Polish Academy of Sciences, and two of us had a pleasure to work in it. At that time, we were 

developing a semi-formal metalanguage called MetaSoft dedicated to formal definitions of programming 

languages (cf. [24]).  

Sec.2 is devoted to the introduction of all mathematical tools used later in the description of our model. 

They include: 

1. a formal, but not formalized, definition of MetaSoft, 

2. fixed-point theory in partially ordered sets, 

3. the calculus of binary relations, 

4. formal-language theory and equational grammars, 

5. fixed-point domain-equations based on so-called naive denotational semantics,  

6. many-sorted algebras, 

7. abstract errors as tools for the description of error-handling mechanisms, 

8. three-valued predicate calculi of McCarthy and Kleene, 

9. equational grammars and the corresponding syntactical algebras, 
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10. a short half-formal reminder of LL(k) grammars. 

Sec. 3 includes an intuitive description of our model, and defines major milestones to be reach in its 

construction.  

Sec. 4 is devoted to the development of a general model of data structures and their types. Types, which 

are frequently regarded as categories, i.e. sets, of data, in our model are finitistic structures that indicate the 

shapes of the corresponding data, such as integers, reals, booleans, words, lists, arrays, records and their 

combinations. This approach allows for definitions of an algebra of types at a data level, and an algebra of the 

denotation of type expressions at the level of denotations. 

In Sec. 4.6 we introduce three fundamental concepts: of a class, an object and a state. We also discuss the 

issue of privacy that is typical for object-oriented mechanisms.  

Sec. 6 constitutes the core of our model, and is devoted to denotations. Here we define the carriers and the 

constructors of an algebra of denotations. From a practical view point, when we design an algebra of 

denotations we decide about the tools offered by a language to programmers.  

Once denotations are defined, we proceed in Sec. 7 to the derivation of syntax. Here, given the signature 

of the algebra of denotations, we derive from it in a step-by-step way three syntaxes: an abstract syntax, a 

concrete syntax, and a colloquial syntax. Formally these syntaxes constitute algebras, and are described by 

equational grammars.  We also show how to derive a formal definition of a function of semantics, once we 

are given an algebra of denotations and an algebra of colloquial (final) syntax. 

Sec.8 includes a general theory of partial and total correctness of programs. These concepts are formulated 

on the ground of an algebra of binary relations, which makes our approach universal for a large variety of 

programming languages. 

In Sec. 9 these concepts are applied to Lingua to develop a language of validated programming Lingua-

V. In this case, however, we do not build a logic of programs — as C.A.R. Hoare [55], [5] or E. Dijkstra [44], 

[45] did — but instead we define a set of rules for the construction of correct programs.  

The last section terminates the main part of our book. The remaining part includes five annexes devoted to 

selected topics: Tych aneksów jeszcze w książce nie ma ??? 

A. the extension of our model by concurrency mechanisms at the level of simple Petri nets, 

B. the extension of our model by data-base mechanisms basing on SQL, 

C. the extension of our model by the mechanisms of polymorphic types based on a programming language 

OCaml. 

D. a general discussion on the subject of writing manuals for programming languages that have 

denotational semantics, 

E. a list of research areas where our model may be further developed; in particular we indicate potential 

subject of BC-, MS- and PhD dissertations. 

1.4 What is original in our approach? 

Historically the ideas of denotational engineering emerged from early works of A. Blikle ([17] to [28]), 

A.Blikle with A. Mazurkiewicz [32], and A.Blikle with A. Tarlecki [34]. In turn, these works were in this or 

another way following a variety of approaches. Below we give references to the earliest papers on given 

subjects, and to major contributions that followed: 

• generative grammars of N. Chomsky ([37] in 1956, [39] in 1957, [40] in 1959, [41] in 1962, [49] in 

1966 and [16] in 1971), 

• denotational semantics of D. Scott’s and Ch. Strachey’s ([75] in 1971 and [74] in 1977), 

• C.A.R Hoare’s logic of programs (the founding paper [55] in 1969, and surveys [4] in 1981, [5] in 

2020 and [6] in 2020), 

• E. Dijkstra’s total correctness of programs ([44] in 1968 and [45] in 1976), 
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• many-sorted algebras in computer science by J. A Goguen, J.W, Thatcher, E.G. Wagner and J.B 

Wright ([51] in 1977), 

• three-valued propositional calculus of J. McCarthy (cf. [65] in 1967), 

• abstract errors in program’s semantics originally introduced by Joe Goguen ([51] in 1978, [23] in 1981, 

[11] in 1984,  [24] in 1987, [77] in 1988 and [26] in 1988), and later also investigated from a 

perspective of a Hoare’s logic by J. V. Tucker and J. I. Zucker ([77] in 1988). 

What is different in our approach compared to other approaches to denotational semantics and program 

correctness, is the following: 

1. Programming language design and development: 

1.1. a denotational model based on set-theory rather than on D. Scott’s and Ch. Strachey reflexive 

domains, 

1.2. a formal, and to a large extent algorithmic method of the derivation of syntax from an algebra of 

denotations, and a denotational semantics from both of them, 

1.3. the idea of a colloquial syntax which allows making syntax user-friendly without damaging “too 

much” its denotational model, 

1.4. a denotational model covering: 

1.4.1. error-dedection mechanisms supported by three-valued boolean expressions, 

1.4.2. objects and classes, 

1.4.3. some concurrency , 

1.4.4. SQL databases, 

1.4.5. polymorphic types. 

2. The development of correct programs: 

2.1. a method of the development of correct programs with their specifications, seen as an alternative, 

to proving the correctness of (earlier developed) programs,  

2.2. the use of three-valued predicates to enrich Dijkstra’s approach to total correctness by a clean-

termination property. 

3. General mathematical tools of computer sciences: 

3.1. equational grammars applied in defining the syntax of programming languages,  

3.2. a three-valued calculus of predicates applied in designing programming languages and in defining 

sound program constructors for such languages. 
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1.5 Our approach from a TQM perspective  

As we explained earlier, the reason why we have written this book is a lack of mathematical tools that would 

allow software producers to take such responsibility for their products as is usual in all other industries. It does 

not mean, however, that the book offers a tool ready to be used today by IT industry. What we are trying to 

offer is only a proposal of where to seek for such tools, and a suggested mathematical framework to build 

them.  

To better explain what we mean, let us refer to the concept of product quality as understood in the field of 

so called Total Quality Management (TQM). By the quality of a product, we mean the degree of the 

satisfaction of its user. Product quality is usually measured by the number of defects in the product ― the 

fewer defects, the higher the quality. In TQM a defect of a product is defined as property of the product that 

the user „has the right not to expect”. E.g., if we order a beer, we have the right not to expect it to be warm, 

unless we are requesting a mulled beer.  

The quality of a product is therefore not an inherent property of a product, but rather a relation between a 

product and the expectations of its user. Paradoxically we can increase the quality of a product without 

changing the product itself, by when honestly describing all its defects. Unfortunately, this approach is not 

usual in the “real world”, since lowers the chances of selling the product. 

In the case of software, user expectations are described by a specification that a program should fulfil. The 

quality of a program consists therefore in: 

1. the compatibility of program specification with the expectations of its user, 

2. the compatibility of the program with its specification. 

In our book we are tackling only the second aspect whereas the first is still waiting for an independent research. 

Of course, also the second aspects offers a large field of problems which remain to be investigated. They are 

briefly described in Sec. Błąd! Nie można odnaleźć źródła odwołania.. Do napisania ??? 
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2 METASOFT AND ITS MATHEMATICS (to be edited and 

checked) 

When in the years 1970 to 1990 Andrzej Blikle was lecturing mathematical foundations of computer science 

to IT practitioners, he frequently heard an objection that there is definitely much too much of mathematics 

that software engineers have to swallow. Bosses of IT departments expected that their teams could be “trained” 

in that new mathematics within one weekend, well maximally two. Then he was trying to bring to their 

attention the fact that future engineers attend two to five semesters of mathematics during their university 

studies. The majority of this mathematics was, however, created at the borderline between XIX and XX 

century and is oriented towards physics, astronomy, and classical engineering rather than informatics. 

When at the beginning of the second half of XX century mathematicians started to think about mathematical 

theories for computer science, some of the branches of mathematics earlier considered as “unpractical” — 

such as set theory, mathematical logic, or abstract algebras — became their common tools. A little later, new 

branches started to emerge: theory of abstract automata and formal languages, logics of programs, models of 

concurrent systems, and many others. Today mathematical foundations of computer science embraces large 

and sill fast-growing new branches of applied mathematics.  

Of course, in this section, we do not pretend to present even a sketch of that mathematics. We restrict our 

attention to these tools, that we shall use in the book. At the same time we are conscious that for some readers 

going through Sec.2 may be quite challenging. To them we may advice to only slip over this math, and possibly 

return to it when some technique used in subsequent sections will require a deeper justification. 

2.1 Basic notational conventions of MetaSoft 

2.1.1 General rules 

MetaSoft is a semi-formal (not fully formalized) mathematical notation used in describing denotational 

models of programming languages. Each such model consist of three mathematical entities: 

1. Denotations  — the meanings of programs and their components such as expressions, instructions,  

                           declarations etc. 

2. Syntaxes   — programs and their components. 

3. Semantics  — a function that assigns denotations to syntaxes. 

In a colloquial English of computer scientists denotations are most frequently confused with semantic. We 

can hear, e.g., that “the semantics of instructions are functions that modify memory states”. In our approach 

we shall strictly distinguish between denotations which are meanings, syntaxes which are writings used by 

programmers, and semantics which is a function that to every piece of syntax assigns its denotation. We can 

describe this fact by the following formula: 

Sem : Syntaxes ⟼ Denotations 

The notation used in this formula will be explained in Sec. 2.1.3. So far we may only notice that our 

mathematical formulas will be typeset in Arial, rather than in Times New Roman Italic as usual in mathematical 

texts. The reason of this decision is twofold:  
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in our texts we want to distinguish between an informal layer typeset in Times New Roman including its 

italic versions, and the layer of formulas, 

as we are going to see, large and complex formulas that we shall use are better readable in Arial that in 

Times Italic. 

To carefully distinguish between syntax and denotations programs end their components will be typeset in 

Arial Narrow, e.g., 

while x > 100 do x := x-1 od 

Additionally, since while, do and od are keywords, they are typeset in bold.  

Another special property of MetaSoft is that (meta)mathematical variables that denote elements, sets and 

functions are frequently many-character symbols rather than single letters. This solution has been forced by 

the fact that in denotational models we use hundreds of symbols which means even taken together Latin and 

Greek symbols simply wouldn't be enough. Besides, multi-character symbols may carry some hints about their 

meanings. E.g. if by InsDen we denote the set of all denotations of instructions, it is relatively easy to 

remember, what it means.  

Another special notation concerns indexed variable. In traditional mathematics indices are written as 

subscripts, e.g., as ai. Since this complicates typing and is not compatible with the syntaxes used in programs, 

we shall write indices at the same level as an indexed symbol, e.g., as a-i or a.i. Of course, indices may be 

many-character symbols as well.  

Our special notational conventions have one more justification. As we are going to see, the descriptions of 

denotational models in MetaSoft resemble programs, in particular codes of interpreters. In the future the 

writing of such descriptions should be assisted by dedicated editors. The outputs of such editors will then 

become inputs for generators of interpreters or compilers of corresponding programming languages.  

Logical operators are given mnemotechnical names: and, or, not, tt, ff. The two last are logical constants 

“true” and “false”. For quantifiers we shall use: 

∀ ― general quantifier (for all) 

∃ ― existential quantifier (there exists) 

Instead of  i = 1,…,n we shall write i = 1;n. By “iff”  we shall mean “if and only if”, and by “wrt” — “with 

respect to”.  

2.1.2 Sets 

Symbol {} denotes an empty set and  

{ele-1,…,ele-n} or {ele-i | i = 1;n} 

denote finite sets of n elements. The fact that ele is, or is not, an element of a set of elements Element we 

shall write as 

ele : Element  or respectively as  ele /: Element 

For any sets A and B their inclusion will be written as 

A ⊆ B 

By 

A | B  and A∩B 

we denote the union and the intersection of these sets . If FamSet is a family of sets then 

U.FamSet 

denotes the union of all the sets of this family. By 

A x B 
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w denote the Cartesian product of sets. The expression: 

A x B x C x D 

denotes the set of tuples of the form (a, b, c, d), whereas the expression: 

A x (B x C) x D 

denotes the set of tuples of the form (a, (b, c), d), and analogously for other combinations of parentheses. For 

every n ≥ 0 the n-th Cartesian power Acn of a set A is the set of all tuples of the elements of A, i.e.: 

Ac0 = {()}       — the only element of that set is an empty tuple 

Acn = {(a.,…,a.n) | a.i : A} — for n > 0 

Using Cartesian power, we define two other operations: 

Ac+ = U.{Acn | n > 0} — Cartesian plus operation, 

Ac* = Ac0 | Ac+    — Cartesian star operation. 

The set of all subsets of A and respectively of all finite subsets of A is denoted by 

Sub.A 

FinSub.A 

The following notations shall be used for sets of relations and functions: 

Rel.(A,B) — the set of all binary relations between A and B; i.e., the set of all subsets 

of A x B; more about binary relations in Sec.2.7, 

A → B — the set of all partial functions from A to B, i.e., functions that do not 

need to be defined for all elements of A,  

A ⟼ B — the set of all total functions from A to B, i.e., functions that are defined 

for all elements of A; notice that each total function is a partial function 

but not vice-versa, 

A ⟹ B — the set of all mappings from A to B, i.e., functions defined for only a 

finite subset of A. 

Following this notation by 

f : A → B 

we mean that f is an element of the set A → B, i.e. is a partial function from A to B, and analogously for other 

operators creating sets of functions. A is called the domain of f, and B is called its range. The use of colon “:” 

also explains why the traditional a ∈ A we write as a : A.  

2.1.3 Functions 

For practical reasons, the value of a function fun shall be written as fun.a rather than fun(a). Why this is 

practical will be seen a little later. The expression 

fun.a = ?                                (2.1-1) 

means that fun is not defined for a. It does not mean that “?” is anything like an “undefined element”. The 

expression fun.a = ? stands for  

not (∃b)(fun.a=b) 

Analogously 

fun.a = ! 
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stands for (∃b)(fun.a=b). For an arbitrary function 

fun: A → B 

and an arbitrary set C by the truncation of  f to C we shall mean: 

fun truncate-to C = {(a, fun.a) | a : A ∩ C}. 

The domain of definedness of f is the set where f is defined, i.e. 

def-dom.fun = {a | a : A and fun.a = !} 

In the sequel we shall also use the notation 

fun[a/?] = fun truncate-to (def-dom.fun – {a}) 

Another notation that will be used frequently comes from Haskell Curry and concerns many-argument 

function whose arguments are taken successively one after another. For instance, if  

fun : A → (B → (C → (D → E)))                         (2.1-2) 

then a value of such a function would be traditionally written as 

((((fun.a).b).c).d) 

 but Curry writes it is 

fun.a.b.c.d  

which intuitively means that  

• function f takes a as an argument and returns as value a function fun.a that belongs to the set 

B → (C → (D → E)), and next 

• function fun.a takes as an argument an element b and returns as a function fun.a.b that belongs to  

C → (D → E), etc.  

This notation allows not only to avoid many parentheses but also to define function of “mixed” types like e.g. 

fun : A → (B ⟼ (C → (D ⟹ E)))  or                      (2.1-3) 

fun : (A → B) ⟼ (C → (D ⟹ E)) 

Another simplifying convention allows to write 

fun : A → B ⟼ C → D ⟹ E                         (2.1-4) 

instead of 

fun : A → (B ⟼ (C → (D ⟹ E)))                       (2.1-5) 

The expression 

fun : ⟼ A                                   (2.1-6) 

means that fun is a zero-argument function with only one value that belongs to A. That value is denoted by 

fun.() 

About formulas in (2.1-2) to (2.1-6) we say that they describe type or signatures of corresponding functions. 

For instance we say that the function in (2.1-5) is of the type 

A → B ⟼ C → D ⟹ E 

For every (possibly partial) function 

fun : A → A,  

by its n-th iteration where n = 0,1,2,…we shall mean the function 
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funn : A → A 

defined in the following way: 

fun0 is an identity function on A, i.e. fun.a = a for every a : A, 

funn.a = fun.(funn-1.a) for n > 0. 

In denotational definitions of programming languages, we shall frequently use many-level conditional 

definitions of functions with the following scheme: 

fun.x =  
pre-1.x ➔ val-1 
pre-2.x ➔ val-2 
…                                 (2.1-7) 
pre-n.x ➔ val-n 

where each pre-i is a classical predicate, i.e., a total function with logical values tt or ff, and each val-i is some 

value. Formula (2.1-7) is read as follows: 

if pre-1.x is true, then f.x = val-1 and otherwise, 

if pre-2.x is true, then f.x = val-2 and otherwise, 

… 

Intuitively speaking, the evaluation of this function goes line by line and terminates at the first line where pre-
i.x is satisfied. Of course, to make such a definition unambiguous, the disjunction of all predicates pre-i.x 

must evaluate to “true”, which means that all these predicates must exhaust all cases. Our usual way to ensure 

this condition shall be to write true at the last line, which denotes a predicate, that is always true. It can also 

be read as “in all other cases”.  

In the scheme (2.1-7) we also allow the situation where, in the place of a val-i we have the undefinedness 

sign “?” which means that for x that satisfies pre-i.x, function f is undefined. This convention allows for 

conditional definitions of partial functions. 

In conditional definitions we also use a technique similar to defining local constants in programs. For 

instance if fun : A x B ⟼ C we can write 

fun.x =  
pre-1.x  ➔ val-1 
let  
(a, b) = x 
pre-2.a  ➔ val-2 
pre-3.b  ➔ val-3 
… 

which is read as: let x be a pair of the form (a, b). We can also use let in the following way: 

fun.x =  
pre-1.x  ➔ val-1 
let  
y = h.x 
pre-2.x  ➔ fun-2.y 
pre-3.x  ➔ fun-3.y, 
… 

All these explanations are certainly not very formal, but the notation should be clear when it comes to its 

applications in the sequel of the book. A finite total function fun : {a-1,…,a-n} ⟼ {b-1,…,b-n} defined by 

the formula: 

fun.x =  
x=a-1  ➔ b-1 
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x=a-2  ➔ b-2 
…    
x=a-n  ➔ b-n 
true  ➔ ? 

shall be written as 

[a-1/b-1,…,a-n/b-n]  or alternatively as [a-i/b-i | i = 1;n]. 

The empty function will be denoted by [ ]. Let f : A → B and g : C → D. The overwriting of  f by g is a 

function denoted by 

f⧫g : A|C → B|D  

and defined in the following way: 

(f⧫g).x = 
g.x = !   ➔ g.x 
g.x = ? ➔ f.x 

In particular this means that if f.x=? and g.x=?, then f⧫g.x=?. A particular case of overwriting is an update 

of a function written as f[a-1/b-1,…, a-n/b-n] and defined by the formula 

(f[a-1/b-1,…, a-n/b-n]).x = 
 x = a-1 ➔ b-1 
 … 
 x = a-n ➔ b-n 

true  ➔ f.x 

2.2 Tuples 

An expression 

(a-1,…,a-n) or alternatively (a-i | i=1;n) 

denotes n-tuple. Consequently () denotes an empty tuple. The difference between tuples and finite sets is such 

that the order of elements in a tuple is relevant and repetitions are allowed, which is not the case for sets. E.g. 

{a, b, c ,c} = {a, c, b } = {a, b, c} = … 
(a ,b, c, c) ≠ (a, c, c, b) ≠ (a, b, c) 

where a, b and c are different with each other.  

Tuples are used as mathematical models for several concepts in theoretical computer science and among 

others for pushdowns. In this area the following functions shall be used later on in the book: 

push.(b, (a-1,…,a-n))  = (b, a-1,…,a-n,) for n ≥ 0 
pop.(a-1,…,a-n)    = (a-2,…,a-n)  for n ≥ 2 
pop.(a)       = () 
pop.()       = () 
top.(a-1,…,a-n)    = a-1      for n ≥ 1  
top.()        = ? 

An important operation on tuples is a concatenation of tuples: 

(a-1,…,a-n) © (b-1,…,b-m) = (a-1,…,a-n, b-1,…,b-m). 

We shall also use two predicates: 

are-repetitions.(a-1,…,a-n) = tt iff there exist i ≠ j such that a-i = a-j 
no-repetitions.(a-1,…,a-n) = tt iff there are no i ≠ j such that a-i = a-j 

Tuples may also be regarded as functions from natural numbers into their elements i.e. 
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(a-1,…,a-n).i = a-i 

In the sequel we shall need a function that given a tuple, returns its length: 

length.() = 0 
length.(a-1,…,a-n) = n 

2.3 Partially ordered sets 

Let A be an arbitrary set and let 

⊑ : Rel(A,A) 

be a binary relation in that set. Relation ⊑ is said to be a partial order in A if for any a, b, c : A the following 

conditions are satisfied: 

1. a ⊑ a          reflexivity 

2. if a ⊑ b and b ⊑ c then a ⊑ c  transitivity 

3. if a ⊑ b and b ⊑ a then a = b  weak antisymmetricity 

If only 1. and 2. are satisfied then ⊑ is said to be a quasiorder. In the sequel we shall deal most frequently 

with partial orders.   

If a ⊑ b, then we say that a is smaller than b or that b is greater than a. If additionally a ≠ b, then we say 

that a is significantly smaller than b or that b is significantly greater than a.  

A pair (A, ⊑) is called a partially ordered set (abbr. POS), and the set A is called its carrier. The word 

“partial” means that not necessarily any two elements of A are comparable with each other. If 

for any a and b either a ⊑ b or b ⊑ a,  

then we say that this is a total order.  

Of course, every linear order is partial, and every partial order is a quasiorder but not vice versa. An example 

of a partial order which is not total is the inclusion of sets. Such POS is called set-theoretic POS.  

Let B be a subset of a partially ordered A and let b : B. In that case 

• b is called a minimal element in B, if there is no a : B such that a ⊑ b and a ≠ b 

• b is called the least element in B, if for any a : B holds b ⊑ a, 

• b is called a maximal element in B, if there is no a : B such that b ⊑ a and a ≠ b, 

• b is called the greatest element in B, if for any a : B holds a ⊑ b. 

There exist partially ordered sets without a minimal element and sets where there is more than one such 

element. However, if there is the least element in a set, then it is the unique minimal element and analogously 

for maximal and greatest elements.  

An upper bound of B is such an element of A, which is greater than any element of B. Notice that an upper 

bound of a set does not need to belong to that set, but if it does belong, then it is the greatest element of the 

set. 

If the set of all upper bounds of B has the least element, then this element is called the least upper bound 

of B2. If a two-element set {a, b} has the least upper bound, then we denote it by 

a ˅ b 

 

2 The greatest lower bound is defined in an analogous way but that concept will not be used in the book.  
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In a set-theoretic POS, the least upper bound of a family of sets is the set-theoretic union of that family. This, 

of course, also concerns a family of two sets. 

2.4 Chain-complete partially-ordered sets 

Let (A, ⊑) be a partially ordered set. By a chain in that set we mean any sequence of elements of A: 

a.1, a.2, a.3, … 

such that a.i ⊑ a.(i+1). Here, for a change we write a.i rather than a-i. Note that in this case a may be regarded 

as a function with natural-number arguments. If the set of all elements of a chain has the least upper bound, 

then it is called the limit of that chain and is denoted by: 

lim.(a.i | i = 1,2,…) 

A POS is said to be chain-complete partially ordered set (abbr. CPO) if: 

1. every chain in A has a limit, 

2. there exists the least element in A. 

This least element we shall denote by Φ.  

A total function f : A ⟼ A is said to be monotone if a ⊑ b implies f.a ⊑ f.b and we say that it is continuous 

if the following two conditions are satisfied: 

1. for any chain (a.i | i = 1,2,…) the sequence (f.(a.i) | i = 1,2,…) is also a chain, 

2. if the former has a limit, then the latter has a limit as well and 

lim.(f.(a.i) | i = 1,2,…) = f.(lim.(a.i | i = 1,2,…)). 

As is easy to see, every continuous function is monotone, which follows from the fact that 

if a ⊑ b then lim(a, b, b, b, …) = b.  

Continuous functions satisfy a theorem — due to S.C. Kleene [57] — which we shall frequently use in our 

applications. 

Theorem 2.4-1 If f is continuous in a chain-complete set, then the set of all solutions of the equation 

x = f.x                                (2.4-1) 

is not empty and contains the least element defined by the equation  

Y.f = lim.(fn.Φ | n = 0,1,2,…) ■ 

Proof of that theorem is very simple: 

f.(Y.f) = f.(lim.(fn.Φ | n = 0,1,2,…)) = lim.(fn.Φ | n = 1,2,…) = lim.(fn.Φ | n = 0,1,2,…). 

The last equality follows from the fact that f0.Φ = Φ, hence adding f0.Φ to the chain, does not change its limit. 

■ 

The equation (2.4-1) is called a fixed point equation and its solution Y.t — the least fixed point of function 

f. It is the least solution of the equation (2.4-1), but in the sequel we will call it simply the solution since other 

solutions will not be concerned.  

The concept of a one-argument continuous function may be simply generalised to functions of many 

arguments. We say that 

f : Acn ⟼ A                                    (2.4-2) 

is continuous wrt to its first element, if for any tuple (a.1,…,a.(n-1)) the function 

g.a = f.(a, a.1,…,a.(n-1))  

is continuous. In an analogous way we define the continuity of f with respect to any other of its arguments.  
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A many-argument function (2.4-2) is called continuous if it is continuous in all of its arguments.  

As we are going to see soon, continuous functions are fundamental for our applications since due to 

Kleene’s theorem we can recursively define sets and functions. Such definitions will most frequently have the 

form 

x.1 = f-1.(x.1,…,x.n) 
… 
x.n = f-n.(x.1,…, x.n) 

Of course, every such set of equations may be regarded as one equation 

X = f.X 

in a POS over a Cartesian product A.1 x … x A.n where 

f.(x.1,…,x.n) = (f-1.(x.1,…,x.n),…, f-n.(x.1,…,x.n)) 

and where the order is defined component-wise, i.e. 

(a.1,…,a.n) ⊑(n) (b.1,…,b.n) iff a.i ⊑ b.i for i = 1;n. 

As is easy to show, if all A.i’s are chain-complete, then their Cartesian product is chain-complete wrt the above 

order. Besides, if all f-i are continuous, then f is continuous, as well.  

As turns out, fixed-point sets of equations with continuous functions may be transformed (and reduced) in 

a way analogous to the case of algebraic equations. It is expressed by two theorems due to Hans Bekić [11] 

and Jacek Leszczyłowski [60]. 

 

Theorem 2.4-2 If  f, g : A x A ⟼ A are continuous, then the set of equations 

a = f.(a, b) 

b = g.(a, b) 

is equivalent to 

a = f.(a ,b) 

b = g.( f.(a, b), b)  ■ 

 

Theorem 2.4-3 If  f, g : A x A ⟼ A are continuous, then the set of equations 

a = f.(a ,b) 

b = g.(a, b) 

is equivalent to 

a = h.b 

b = g.(a, b) 

where h is a function that to every b assigns the least fixed point of  f.(x, b) regarded as a one-argument 

function of x running over the set A. ■ 

As we are going to see, the theory of fixed-point equations in CPO is an important tool for writing recursive 

definitions of sets and of functions in denotational models. More investigations about continuous functions 

may be found in [24]. 
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2.5 A CPO of formal languages 

Grammars of natural languages such as English, Polish, French, etc. may be regarded as algorithms allowing 

to check which sentences are grammatically correct and which are not. In this spirit, Noam Chomsky3 has 

developed in early 1960. his model of generative context-free grammars or simply context-free grammars 

(see [37], [39], [40], [41]). Formal languages generable by such grammars have been called context-free 

languages.  

Although his model turned out to be too weak for natural languages, it was successfully applied for 

programming languages. In the early years for Algol 60 and Pascal, later for ADA and CHILL and many other 

languages. These applications contributed to a rapid development of their theory. The first internationally 

recognized monography on that subject was written in 1966 by Seymour Ginsburg [49], and the first Polish 

monography in 1971 by Andrzej Blikle [16]. A year later, Andrzej Blikle has published a paper on equational 

grammars [18], which are equivalent, in a sense, to context-free grammars.  

This section contains a short introduction to context-free languages in the context of equational grammars.  

Let A be an arbitrary finite set of symbols called an alphabet. By a word over A, we mean every finite tuple 

over A, including the empty tuple (). Traditionally words are written as sequences of characters, e.g., accbda.  

Since words are tuples (of characters) we can apply to them the operation of concatenation defined in Sec. 

2.2. E.g. 

abdaa © eaag = abdaaeaag 

Every set L of words over A is called a formal language (or simply a language) over A. By Lan(A) we denote 

the family of all languages over A and by {} — an empty language (empty set). If P and Q are languages, then 

their concatenation is the language defined by the equation:  

P © Q = {p © q | p:P and q:Q}. 

As we see by © we denote not only a function on words but also on languages. If it does not lead to ambiguities, 

P © Q is written as PQ. Since concatenation is an associative operation, we can write PQL instead of (PQ)L 

or P(QL). We shall also assume that concatenation binds stronger than set-theoretic union, hence instead of  

(P © Q) | (R © S)  

we shall write 

PQ | RS. 

It is also easy to see that concatenation is distributive over the union, i.e. 

(P | Q) R = PR | QR. 

The n-th power of a language P is defined recursively: 

P0 = { () } 

Pn = P © Pn-1 for n > 0 

We shall also use two operators called respectively (language-theoretic) plus and star: 

P+ = U.{Pi | i > 0} 

P* = P+ | P0 

Hence for an alphabet A, the set A+ is the set of all non-empty words over A, and A* is the set of all words 

over A. Languages over A are subsets of A*.  

 

3 Noam Chomsky — an American linguist, philosopher and political activist. Professor of linguistics at Massachusetts 
Institute of Technology, co-creator of the concept of transformational-generative grammars. Chomsky did not 
introduces the idea of Chomsky’s polynomials but his grammars are very close to them. 



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       24 

 

Note that whereas the language-theoretic plus-power of a language L+ is a set of concatenations of words 

of L, hence a set of words again, the Cartesian plus-power  Lc+ includes tuples of words of L.  

The inclusion of sets is, of course, a partial order in Lan(A) and (Lan(A), ⊆) is a CPO with empty language 

as the least element. As is easy to show, all operations on languages, which are defined above, plus the union 

of languages, are continuous. For any two languages, P and Q, their least upper bound is their union P | Q, 
and the limit of a chain of languages is the union of all elements of the chain.  

2.6 Equational grammars 

Since all the operations on languages defined in Sec. 2.5 are continuous, they can be used in fixed-point 

equations (Sec. 2.4) regarded as grammars. This idea is elaborated below. 

Consider a simple example of a set of equations that defines the set of identifiers of a programming 

language. We assume that identifiers always start from a letter: 

Letter   = {a, b, …, z} 
Digit    = {0, 1, …, 9} 
Character = Letter | Digit 
Suffix   = {()} | Character © Suffix 
Identifier = Letter © Suffix 

Such sets of equations are called equational grammars, and their solutions (tuples of languages) are called 

many-sorted languages. In the above case, the defined many-sorted language is a tuple of five categories 

(sorts): 

(Letter, Digit, Character, Suffix, Identifier). 

The category Suffix has an auxiliary character since its only role is to express the fact that an identifier must 

start with a letter. Its equation can be eliminated in using the Theorem 2.3-2 and the Theorem 2.3-3. As is easy 

to prove 

Suffix = Character* 

hence our grammar may be reduced to a more compact form 

Letter   = {a, b, …, z} 
Digit    = {0, 1, …, 9} 
Identifier = Letter © (Letter | Digit)* 

This grammar defines a many-sorted language, which consists of three categories — and therefore is different 

from the former — but defines the same set Identifier.  

Let us now investigate equational grammars more formally (for details see [18]). Let A be an arbitrary non-

empty finite alphabet and let 

Fam ⊆ Lan(A) 

be an arbitrary family of languages over A. Let Pol(Fam) denotes the least class of functions of the type: 

p : Lan(A)cn ⟼ Lan(A)  where n ≥ 0 

which contains: 

(1) all projections, i.e. functions of the form f.(X.1,…,X.n) = X.i for i ≤ n, 

(2) all functions with constant values in Fam, 

(3) the union and concatenation of languages 

and is closed over the composition (superposition) of functions.  



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       25 

 

Functions in Pol(Fam) are called polynomials over Fam. Since all functions described in (1), (2) and (3) 

are continuous, and a composition of continuous functions is continuous, all polynomials are continuous. 

By an atomic language over A we shall mean any one-element language {w}, where w : A*. Polynomials 

over an arbitrary set of atomic languages are called Chomsky’s polynomials. Below a few examples of such 

polynomials: 

p1.(X,Y,Z) = {b} 
p2.(X,Y)    = {b} 
p3.(X,Y,Z) = X  
p4.(X,Y,Z) = ({d}X{b}YY{c} | X) Z 

Observe that for a complete identification of a polynomial we have to define its arity. This can be seen on the 

example of p1 and p2.  

Polynomials which do not “contain” union — e.g., such as p1, p2, and p3 — are called monomials. Since 

concatenation is distributive over the union, every polynomial may be reduced to a union of monomials.  

An equational grammar over an alphabet A is any fixed-point set of equations of the form: 

X.1 = p-1.(X.1,…,X.n) 
…    
X.n = p-n.(X.1,…,X.n) 

where all p-i’s are Chomsky’s polynomials over A. Since polynomials are continuous, this set of equations 

has a unique least solution (L.1,…,L.n). The languages L.1,…L.n are said to be defined by our grammar. We 

also say that they are equationally definable.  

As has been proved in [18], the class of equationally-definable languages is identical with the class of 

context-free languages in the sense of Chomsky4. Such a class remains the same if we allow the operations 

“*” and “+” in polynomials and if polynomials are built over arbitrary equationally-definable languages. For 

proofs of all these facts, see [18].  

Due to these facts in the sequel of the book, equationally-definable languages will be called context-free. 

2.7 A CPO of binary relations 

Let A and B be arbitrary sets. Any subset of their Cartesian product A x B will be called a binary relation or 

just a relation between these sets. Hence 

Rel(A,B) = {R | R ⊆ A x B} 

is the set of all binary relations between A and B. Instead of writing (a,b) : R, we shall usually write a R b.  

If A = B, then instead of  Rel(A, A) we write Rel(A). For every A we define an identity relation: 

[A] = {(a, a) | a:A} 

By Ø, we shall denote the empty relation5. Let now 

Boolean = {tt, ff}     — logical values 

p : A  → Boolean     — a predicate 

With every predicate, we assign an identity relation defined by 

Id(p) = [{a | p.a = tt}] 

If R : Rel(A,B), then 

 

4 Which means that for each equational grammar there exists an equivalent context-free grammar and vice versa.  
5 The same symbol was used for an empty set which is not an inconsistency since each relation is a set. 



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       26 

 

dom.R = {a | (Ǝ b : B) a R b}  ― the domain of R 

cod.R  = {b | (Ǝ a : A) a R b}  ― the codomain of R 

Let P : Rel(A,B) and R : Rel(B,C). Sequential composition of P and R we call a relation  

P ● R : Rel(A,C)  

defined as follows:  

P ● R = {(a, c) | (Ǝ b : B) (a P b & b R c)} 

For every two relations, their composition always exists, although it may be an empty relation. As is easy to 

check ● is associative i.e. 

(P ● R) ● Q = P ● (R ● Q) 

It is, therefore, legal to write P ● R ● Q. We shall also write PR instead of P ● R whenever this does not 

lead to misunderstanding, and we shall assume that composition binds stronger than union, hence instead of 

(P ● R) | (Q ● S) 

we write 

PR | QS. 

In the sequel of the book, the sequential composition of relations will be most frequently applied in the 

particular case where the composed relations are function. In that case: 

(P ● R).a = R.(P.a) 

and therefore 

(P ● R ● Q).a = (P ● (R ● Q)).a = Q.(R.(P.a))) 

which means that in a sequential composition of functions, the composed functions are “executed” from left 

to right one after another. 

Similarly as for languages also for relations, the operations of iterations, i.e. of power and star are defined. 

In this case: 

R0 = [A]  ― identity relation in over A 

Rn = RRn-1 for n > 0 

R+ = U {Rn | n > 0}  

R* = R+ | R0 

The converse relation for R is defined as follows 

 a R-1 b   iff   b R a 

A relation R is called a function, if ⊇ 

for any a, b and c, if a R b and a R c, ten  b = c. 

If R and R-1 are functions, then R is said to be a convertible function or a one-one function. If P and R are 

functions, then PR is also a function and 

(PR).a = P.(R.a) 

hence the composition of functions is their superposition. 

The set of relations Rel(A,B) constitutes a CPO with ordering by set-theoretic inclusion and the empty 

relation as the least element. All of the defined operations on relations are continuous. The future we shall 

frequently refer to the following theorem: 
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Theorem 2.7-1 For any P, Q : Rel(A) the least solutions of equations 

X = P | QX and 

X = P | XQ 

are respectively 

X = Q*P  and 

X = P*Q 

Moreover, if both P and R are functions with disjoint domains, then both these solutions are also functions.■ 

In this place, it is worth noticing that the set of partial functions 

A → B 

constitutes a chain-complete subset of (Rel(A,B), ⊆) that is closed under the composition of arbitrary 

functions and union of functions with disjoint domains. Of course, both these operations are continuous.  

Due to these facts, functions can be defined by fixed-point (recursive) equations. Since A and B are 

arbitrary, this is also true for functions of type 

f : A1 → A2 → … → An 

provided that appropriate constructors are defined. As a first example, consider a recursive definition of a 

function of an n-th power of number 2, i.e.6. 

power-of-two : Number → Number  where Number = {0, 1, 2,…} 

power-of-two.n = 2n        for an integer n ≥ 0 

A recursive definition of that function is as follows: 

power-of-two.n =  
 n = 0  ➔ 1 
 n > 0  ➔ power-of-two.(n-1) * 2 

This definition written as a fixed-point equation in the set-theoretic CPO  

(Number → Number, ⊆, [ ]) 

is as follows 

power-of-two = zero ⧫ (minus ● power-of-two) ● double   

where 

zero.n  = [0/1] 
minus.n  = n-1  for n > 0 
minus.0  = ? 
double.n = 2 * n 

Notice that all these functions are constants in our equation, hence the right-hand side of that equation 

represents a one-argument function in our CPO: 

F.fun = zero ⧫ (minus ● fun) ● double 

Since, as is easy to prove, ⧫ and ● are continuous on both arguments, our function F is continuous as well, 

and therefore ― according to Kleene’s theorem ― the least solution of our equation is the limit (the union) 

of the following chain of functions: 

 

6 Here we introduce a notational convention of VDM and MetaSoft where instead of using one-character symbols as in 
usual mathematics, we use many-character symbols for both sets and functions. As we are going to see later, this 
convention is practically a must in the case of denotational models where numbers of symbols goes into tenses if not 
hundreds.  
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F.{ }    = zero           = [0/1] 
F.zero   = zero ⧫ (minus ● zero) ● duble  = [0/1, 1/2]  
F.(F.zero)  = zero ⧫ (minus ● F.zero) ● duble = [0/1, 1/2, 2/4]  
… 

Each element of that chain is a finite approximation of our function power-of-two.  

Now let us consider a technically more complicated example of a two-argument function of power in the 

set of natural numbers: 

power : Number x Number → Number 

power.n.m =  
m = 0 ➔ 1 
m > 0 ➔ n ٭ power.n.(m-1)) 

This definition can be expressed as a fixed-point equation in the CPO of binary relations: 

Rel.(Number x Number, Number) 

To see that, let us construct a fixed-point equation whose solution is the function: 

power.(n, m) = nm 

regarded as a relation in our CPO. Let us start from the definitions of a certain operation of composition of 

functions 

F, Q : Rel.(A x A, A)                             (2.7-1) 

By the composition of  F and Q on the second argument, we shall mean the relation 

F  Q = {((a, b), c) | (∃d) ((a, b), d) : F and ((a, d), c) : Q} 

If F and Q are functions then 

[F  Q].(a, b) = Q.(a, F.(a, b)) 

The set of relations (2.7-1) is, of course, a CPO with set-theoretic inclusion. One can show that  is 

continuous on both arguments. Since the limit of a chain is in our case the set-theoretic union, it is sufficient 

to show that  is distributive over union on both arguments, which means that the following equalities hold 

(we assume that  binds stronger than the union): 

(F-1 | F-2)  Q = F-1  Q | F-2  Q  and 

F  (Q-1 | Q-2) = F  Q-1 | F  Q-2 

Let then 

 ((a, b), c) : (F-1 | F-2)  Q 

which means that there exists a d such that 

((a, b), d) : (F-1 | F-2)  and ((a, d), c) : Q 

which means that there exist i and d such that 

((a, b), d) : F-i and ((a, d), c) : Q 

which means that there exists i such that 

((a, b), c) : F-i  Q 

which means that 

((a, b), c) : F-1  Q | F-2  Q 

In this way, we have proved the inclusion  

(F-1 | F-2)  Q ⊆ F  Q-1 | F  Q-2  
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The proofs of the remaining three inclusions are analogous.  

Since  is continuous on both arguments the following fixed-point equation has the least solution: 

power = zero | (minus  power)  times                   (2.7-2) 

where: 

zero(n, 0)   = 1 
minus.(n, m) = m-1  for m > 0, and for m = 0 this function is undefined 
times.(n, m) = n٭m 

Since the set-theoretic union and our composition are both continuous in the CPO of relations (2.7-1), 
Kleene’s theorem implies that the solution of (2.7-2) is the limit of the chain of relation 

 P0 ⊆ P1 ⊆ P2 ⊆ …                             (2.7-3) 

which are functions defined in the following way: 

P0  = zero  
Pi+1 = (minus  Pi)  times  for i ≥ 0 

This means that for every i ≥ 0 function Pi is a partial function of power restricted to m ≤ i: 

Pi.(n, m) = 
 m ≤ i ➔ mi 

 true  ➔ ? 

Since all these functions coincide on the common parts of their domains, the set-theoretic union of the chain 

(2.7-3) is a function, and it is the power function defined for arbitrary n, m ≥ 0. 

2.8 A CPO of denotational domains 

One of the main tools of denotational models of software systems are sets traditionally called domains. These 

domains are most frequently defined using equations — possibly fixed-point equations — based on functions 

that are listed below. Some of them have been already defined, but we recall their descriptions just to have 

their full list in one place: 

1)  A | B   ― set-theoretic union 

2)  A ∩ B   ― set-theoretic intersection 

3)  A x B   ― Cartesian product 

4)  Acn    ― Cartesian n-th power 

5)  Ac+    ― Cartesian +-iteration  

6)  Ac*    ― Cartesian *-iteration 

7)  FinSub.A ― the set of all finite subsets 

8)  A ⟹ B  ― the set of all mappings including the empty mapping 

9)  A – B   ― set-theoretic difference 

10)  Sub.A  ― the set of all subsets 

11)  A → B  ― the set of all functions from A to B 

12)  A ⟼ B  ― the set of all total functions from A to B 

13)  Rel.(A,B) ― the set of all relations from A to B 

These operators may be used in “direct” equations, e.g. 

State  = Identifier ⟹ Data                        (2.8-1) 



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       30 

 

InsDen = State → State                    instruction denotations 

or in fixed point equations, e.g.: 

Record = Identifier ⟹ Data                          (2.8-2) 
Data  = Number | Record 

Whereas definition (2.8-1) does not raises any doubts, in the case of (2.8-2) the situation is different. Since 

this is obviously a fixed-point equation we have to prove the continuity of ⟹ and |, but the continuity where? 

What is the CPO of domains? Set-theoretic inclusion is clearly it’s partial order, but what is the carrier?  

Potentially that carrier should include all domains that we shall define in the future, hence something like 

the set of all sets. Unfortunately — as it has been known since 1930-ties — such a set does not exist7. Despite 

this fact, our problem can be solved on the base of M.P. Cohn’s [42] construction. As he has shown, for any 

collection of sets B (a collection does not need to be a set!) there exists a set of sets Set.B with the following 

properties: 

1. all sets in B belong (as elements) to Set.B, 

2. Set.B is closed under all our operations from 1) to 13), 

3. Set.B is closed under unions of all denumerable families of its elements, 

4. the empty set {} belongs to Set.B. 

Following this construction, we choose as family B, the set of all initial domains that we shall use in our 

model, such as Boolean, Number, Identifier, Character, etc. Since (Set.B, ⊆) is a set-theoretic CPO, we 

can talk about the continuity of functions defined on sets in Set.B. As is easy to show operations from 1) to 

8) are continuous, the difference of sets is continuous only on the left argument, and the remaining functions 

are not continuous, and therefore they cannot appear in fixed-point equations8.  

As we see, therefore, the equation (2.8-2) has a solution (the least solution) defined by the theorem of 

Kleene (Sec.2.4). Records defined in that way may “carry” other records, but of a “lower-level” than 

themselves. At the end of that hierarchy, we have records carrying numbers. If however, we replace ⟹ by →, 

then (2.8-2) would have no solution. A problem of precisely that type encountered mathematicians who, in 

the early 1970-ties, had been trying to define denotational semantics for Algol 60. More on that subject in Sec. 

3.1.  

As can be easily proved, among our functions on domains 1) – 8) are continuous on both arguments, 9) is 

continuous on the first argument only, and 10) – 13) are not continuous in both arguments.  

The fact that non-continuous operators cannot be used in fixed-point domain equations does not mean 

however that they cannot be used in fixed-point equations “at all”. For instance, our two sets of equations 

(2.8-1) and (2.8-2) can be legally combined into one: 

dat : Data  = Number   |    Record                     (2.8-3) 
rec : Record = Identifier  ⟹ Data 
sta : State  = Identifier  ⟹ Data 
ind : InsDen  = State   → State  

 

7 Formally speaking the attempt of constructing such a set leads to a contradiction. Indeed, let Z be the set of all sets. 
Let then Ze be the set of all sets that are their own elements and Zn — the set of all sets that are not their own 
elements. Since obviously Z = Ze | Zn, set Zn must belong to either Ze or Zn. The first case must be excluded since 
in that case Zn should belong to Zn. The second case is impossible either, since then Zn must not belong to itself. 
Intuitively speaking one can say that the collection of all sets is “to large to be a set”.  

8 As an example, let us show that the operator → is not continuous. Let then A1 ⊂ A2 ⊂ …be an arbitrary chain of 
mutually different sets, and let B be an arbitrary set. The sequence of domains Ai → B constitutes a chain but none of 
its elements contain a total function on the union UAi, hence none of such functions belong to U(Ai → B), which means 
that U(Ai → B) ≠ UAi → B. In an analogous way we may show the non-continuity of the operators A ⟼ B and Rel.(A,B). 

Notice, however, that U(Ai ⟹ B) = UAi ⟹ B, and similarly for the right-hand-side argument which means that ⟹ is 
continuous on both arguments. 
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Although “as a whole” this is a fixed-point set of equations with one non-continuous operation, the recursion 

is present only in the second and the third equation where the operators are continuous. This set of equations 

is therefore legal. 

In the above example we have introduced yet another notational convention. Every definition of a domain 

is preceded by a denotation of a “typical element” of this domain. E.g. the elements of domain Data will be 

denoted by dat, possibly with indices, e.g., dat.i. 

2.9 Abstract errors 

For practically all expressions appearing in programs, their values in some circumstances can’t be computed 

“successfully”. Here are a few examples: 

• expression x/y cannot be evaluated if the variables x or y have not been declared as numbers, 

• expression x/y cannot be evaluated if the current value of y is zero, 

• expression x+y cannot be evaluated if its value exceeds the maximal number allowed in current 

implementation; alternatively, if additions is a modulo operation, it will return an incorrect result,  

• the value of the array expression a[k] cannot be computed if the variable a has not been declared as an 

array or if k is out of the domain of a, 

• the query “Has John Smith retired?” cannot be answered if John Smith is not listed in the database. 

In all these cases, a well-designed implementation should stop the execution of a program and generate an 

error message.  

To describe such a mechanism formally, we introduce the concept of an abstract error. In a general case, 

abstract errors may be anything, but in our models, they are going to be words, such as, e.g. ‘division by zero 
not allowed’. They are closed in apostrophes to distinguish them from metavariables at the level of MetaSoft. 

The fact that an attempt to evaluate the expression x/0 raises an error message can be now expressed by the 

equation: 

x/0 = ‘division by zero not allowed’ 

In the general case with every domain Data, we associate a corresponding domain with abstract errors 

DataE = Data | Error 

where Error is a universal set of all abstract errors that may be generated in course of the executions of our 

programs. This set will be regarded as a parameter of our denotational model. Now, every partial operation  

op : Data.1 x … Data.n → Data, 

whose partiality is computable,9 may be extended to a total operation 

ope : DataE.1 x … DataE.n ⟼  DataE 

Of course ope should coincide with op wherever op is defined, i.e. if d.1,…,d.n are not errors and 

op.(d.1,…,d.n) is defined, then ope.(d.1,…,d.n) = op.(d.1,…,d.n).  

An operation ope will be said to be transparent for errors or simply transparent if the following condition 

is satisfied: 

if d.k is the first error in the sequence d.1,…,d.n, then ope.(d.1,…,d.n) = d.k 

 

9 Partiality of a function f is computable, if there is an algorithm which for every element  x can detect if f.x is defined or 
not. In the examples of this section all functions have computable partialities. However, it is a well-known fact, that in 
the general case the definedness of recursive functions is not computable. E.g. there is no algorithm which given a 
program, and a memory state, will check whether the execution of this program for this state as initial, will terminate. 
Therefore, we cannot assume that any undefinedness will be signalized by an error message.  
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This condition means that arguments of ope are evaluated one-by-one from left to right, and the first error (if 

it appears) becomes the final value of the computation. 

The majority of operations on data that will appear in our models will be transparent. An exception are 

boolean operations discussed in Sec. 2.10. 

Error-handling mechanisms are frequently implemented in such a way that errors serve only to inform the 

user that (and why) program evaluation has been aborted. Such a mechanism will be called reactive. However, 

in some applications the generation of an error results in an action, e.g., of recovering the last state of a 

database (Sec. Błąd! Nie można odnaleźć źródła odwołania.). Such mechanisms will be called proactive.  

As we shall see in the sequel of the book, a reactive mechanism may be quite simply enriched to a proactive 

one. However, since the latter is technically more complicated, in the development of our example-language 

Lingua, except Lingua-SQL, we shall most frequently apply a reactive model. Proactive constructions are 

discussed in Sec. 6.5.7 and Sec. ???. Znajdzie się w aneksie o SQL. 

A well-defined error-handling mechanism allows avoiding situations where programs hang up without any 

explanation, or even worse — when they generate an incorrect result without warning the user (see Sec. Błąd! 

Nie można odnaleźć źródła odwołania.).  

2.10 A three-valued propositional calculus 

Tertium non datur — used to say ancients masters. Computers denied this principle. 

In the Aristotelean logic, every sentence is either true or false. The third possibility does not exist. However, 

in the world of computers the third possibility is not only possible but inevitable. For instance the boolean 

expression x/y>2 may evaluate to true, false or error if y = 0. Error is, therefore, the third logical value. 

To describe the error-handling mechanism of in boolean expressions the basic domain of two boolean 

values “true” and “false”: 

Boolean = {tt, ff} 

must be enriched by a third element 

BooleanE = {tt, ff, ee} 

where ee stands for “error” , but in this case represents either an error or an infinite computation (a looping). 

We assume for simplicity that there is only one error element that represents all possible error messages and 

indefinite computations. This assumption does not affect the generality of our model since, as we are going to 

see later, at the level of boolean expressions, all errors will be treated in the same way10.    

Now, notice that the transparency of boolean operators would not be an adequate choice. To see that 

consider a conditional instruction: 

if x ≠ 0 and 1/x < 10 then x := x+1 else x := x–1 fi 

We would probably expect that for x=0, one should execute the assignment x:=x-1. If however, our conjunction 

would be transparent, then the expression  

x ≠ 0 and 1/x < 10  

would evaluate to ‘division by zero not allowed’, which means that our program would abort. Notice also 

that the transparency of and would imply 

ff and ee = ee 

 

10 Precisely speaking this is the case assume a reactive error elaboration, i.e. if all errors lead to program abortion. In a 
proactive error elaboration an error may give rise to an error-recovery action. Such a case is briefly discussed in Sec. 
6.5.7. 
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which would mean that when an interpreter evaluates p and q, then it first evaluates both p and q ― as in 

“usual mathematics” ― and only later applies and to them. Such a mode is called an eager evaluation.  

An alternative to it is a lazy evaluation where, if p = ff, then the evaluation of q is abandoned, and the final 

value of the expression is ff. In such a case: 

ff and ee = ff 

tt or ee  = tt 

A three-valued propositional calculus with lazy evaluation was described in 1961 by John McCarthy [65], 

who defined boolean operators as in Tab. 2.10-1. 

 

or-m tt ff ee 

tt tt tt tt 

ff tt ff ee 

ee ee ee ee 
 

 

and-m tt ff ee 

tt tt ff ee 

ff ff ff ff 

ee ee ee ee 
 

 

not-m  

tt ff 

ff tt 

ee ee 
 

Tab. 2.10-1 Propositional operators of John McCarthy 

To see the intuition behind McCarthy’s operators consider the expression p or-m q assuming that its 

arguments are computed from left to right11: 

• If p = tt, then we give up the evaluation of q (lazy evaluation) and assume that the value of the 

expression is tt. Notice that in this case, we maybe avoid an error message generated by q or entering 

an infinite computation.  

• If p = ff, then we evaluate q, and its value becomes the value of the expression. 

• If p = ee, then this means that the evaluation aborts or loops at the evaluation of p, hence q will not be 

evaluated. As a consequence, the final value of our expression must be ee. 

The rule for and is analogous. Notice that McCarthy’s operators coincide with classical operators on classical 

values (grey fields in the table). McCarthy’s implication is defined classically: 

p implies-m q = (not-m p) or-m q 

As we are going to see, not all classical tautologies remain satisfied in McCarthy’s calculus. Among those that 

are satisfied we have12: 

• associativity of disjunction and conjunction, 

• De Morgan’s laws 

and among the non-satisfied are: 

• or-m and and-m are not commutative, e.g., ff and-m ee = ff but ee and-m ff = ee, 

• and-m is distributive over or-m only on the right-hand side, i.e. 

p and-m (q or-m s)  =  (p and-m q) or-m (p and-m s) however 

(q or-m s) and-m p  ≠  (q and-m p) or-m (s and-m p) since 

(tt or-m ee) and-m ff = ff  and  (tt and-m ff) or-m (ee and-m ff) = ee 

• analogously or-m is distributive over and-m only on the right-hand side, 

• p or-m (not-m p) does not need to be true but is never false, 

 

11 The suffix “-m” stands for “McCarthy” and is used to distinguish McCarthy’s operators not only from classical ones but 
also from the operators of Kleene, which are discussed later.  

12 It is true only in the case where we have one error element.  
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• p and-m (not-m p) does not need to be false but is never true. 

On the ground of McCarthy’s calculus, we build in Sec. 6.5.3 three-valued partial boolean expressions. The 

partiality of these expressions follows from the fact that they may include calls of functional procedures which, 

in turn, may loop indefinitely. In McCarthy’s calculus  ee or tt = ee, since once we enter the loop of the first 

argument we “loose a chance” to learn that the second would evaluate to tt. 

Moze tu wpisac definicje kwantyfikatorow w obu rachunkach ??? 

An alternative to McCarthy’s propositional calculus is that of Kleene with operators defined in the 

following way:  

 

or-k tt ff ee 

tt tt tt tt 

ff tt ff ee 

ee tt ee ee 
 

 

and-k tt ff ee 

tt tt ff ee 

ff ff ff ff 

ee ee ff ee 
 

 

not-k  

tt ff 

ff tt 

ee ee 
 

Tab. 2.10-2 Propositional operators of Steven Kleene 

In this case  

tt or-k ee  = ee or-k tt  = tt 
ff and-k ee = ee and-k ff  = ff 

In this calculus whenever any argument of or-k is tt, then the result is tt, and analogously for and-k. Due to 

this assumption, we gain commutativity of both operators, but at the implementations level we had to compute 

both arguments of our operators “in parallel”, which is hardly acceptable. If, however, we use a propositional 

calculus in proofs rather than in computations, then Kleene’s calculus is more convenient. This is why we 

shall use it in conditions that describe properties of programs (see Sec. 9.2).  

Another case where we shall use Kleene’s calculus are special predicates called yokes (Sec. 4.6), which are 

evaluated in computations, but where procedures (which may loop) are not allowed.  

2.11 Data algebras 

Data types that are used in programs — such as integers, booleans, strings, arrays, lists, etc. — are usually 

associated with some operations on them. For instance, a data type of integers may be associated with 

arithmetical operations, and comparison predicates with the following signatures 

plus  : IntegerE x IntegerE ⟼ IntegerE                            (2.11-1) 
minus : IntegerE x IntegerE ⟼ IntegerE 
times : IntegerE x IntegerE ⟼ IntegerE 
divide : IntegerE x IntegerE ⟼ IntegerE 

less  : IntegerE x IntegerE ⟼ BooleanE  
equal : IntegerE x IntegerE ⟼ BooleanE 

where 

int  : IntegerE  = Integer | Error 
boo : BooleanE = {tt, ff} | Error 

and where Integer is a set of integers representable in a current implementation.  

A mathematical being that includes some sets and operations on them is called a many-sorted algebra. The 

sets in the algebra are called its sorts, and functions — its constructors.  

As we are going to see later, an algebra of data usually includes more than one sort, and with each sort it 

includes some constructors. In our case we may add the following constructors of booleans: 
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or   : BooleanE x BooleanE ⟼ BooleanE 
and  : BooleanE x BooleanE ⟼ BooleanE 
not  : BooleanE      ⟼ BooleanE  

Additionally, we may wish to add to our algebra zero-argument constructors that build some data “out of 

nothing”: 

create-zero : ⟼ IntegerE 

create-one : ⟼ IntegerE 
create-true : ⟼ BooleanE 
create-false : ⟼ BooleanE 

Such zero-argument operations are called constants. We may need constants in an algebra if we want to make 

our algebra reachable, by which we mean that all the elements of sorts may be generated by constructors. 

Note that without integer constants we can’t generate “the first integer”. In turn, to do so we need only one 

constant create-one, since once we have 1 we may generate all other integers and booleans by our 

constructors. Nevertheless, we may wish to have some “superfluous” for practical reasons, although usually 

not in the algebra of data, but in the algebra of denotations. This will be seen in Sec. 4. 

Sometimes many-sorted algebras are visualizes graphically as in Fig. 2.1.3-1. For the simplicity of the 

figure we included only some operation of the algebra and use shorter names of constructors  

 

Fig. 2.1.3-1 Graphical representation of a two-sorted algebra 

2.12 Many-sorted algebras 

Our algebra discussed in Sec. 2.11, let’s call it AlgIntBoo, is a two-sorted algebra since it has two carriers, 

but in general we shall talk about many-sorted algebras. Since such algebras will constitute basic tools in our 

approach to denotational models, we shall briefly introduce their theory. Since this section, and sections 2.13, 

2.14 and 2.15 have strictly mathematical character, we return in these sections to a traditional typesetting of 

indices as ai rather than a.i. By a many-sorted algebra we shall mean a tuple: 

Alg = (Sig, Car, Fun, car, fun) 

where 

Sig = (Cn, Fn, ar, so) — is called the signature of the algebra, 

Cn — is a finite set of words called the names of carriers; 

these names are usually called the sorts of the algebra, 

Fn — is a finite set of words that are the names of functions; 

the functions themselves are called constructors 

ar : Fn ⟼ Cnc* — with every name of a function fn there is associated a 

finite (possibly empty) sequence of sorts 
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ar.fn = (cn1,…,cnk) 

called the arity of fn13 

so : Fn ⟼ Cn — to every name of a function fn the function so assigns a 

carrier name so.fn which is called the sort of  fn,  

Car — a finite set of carriers, 

Fun — a finite set of total functions with arguments and values 

in carriers; these functions are called constructors, 

car : Cn ⟼ Car — to every name cn of a carrier function car assigns a 

corresponding carrier car.cn, 

fun : Fn ⟼ Fun — to every function name fn such that 

   ar.fn = (cn1,…,cnk) 

   so.fn = cn 

the function fun assigns a total function  

   fun.fn : car.cn1 x … x car.cnk ⟼ car.cn 

The concepts of arity and sort are applied not only to function names but also to the corresponding functions. 

Functions in the set Fun are traditionally called constructors. The tuple ((cn1,…,cnk), cn) that describes the 

arity and the sort of a constructor will be called the signature of that constructor.  

Zero-argument constructors, i.e., constructors whose arity is an empty sequence, are called constants of the 

algebra. If f is such a constant, then we write 

f : ⟼ Carrier 

and the unique value of f is written as 

f.() 

It should be emphasized that all constructors of an algebra are total functions. In our approach this is possible 

due to the use of abstract errors (Sec. 2.9).  

As we are going to see in the sequel of the book, the signatures of many-sorted algebras have been 

introduced to describe the derivation of syntax from denotations in the construction of a programming 

language. For concrete algebras, e.g., such as discussed in Sec.2.11, the signature is implicit in the set of 

formulas such as (2.11-1). Now consider two algebras: 

Algi = (Sigi, Cari, Funi, cari, funi)   for i = 1,2 

with signatures 

Sigi = (Cni, Fni, ari, soi)   for i = 1,2 

We say that  Sig2 is an extension of Sig1 or that Sig1 is a restriction of Sig2, if 

1. Cn1  ⊆ Cn2 and Fn1  ⊆ Fn2,  

2. functions ar2, so2 coincide with ar1, so1 on Fn1. 

We say that algebra Alg2 is an extension of algebra Alg1, if  

1. Sig2 is an extension of Sig1, 

 

13 The word „arity” comes from unary, binary, ternary etc.  
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2. car1.cn ⊆ car2.cn for every sort cn : Cn1, 

3. fun2.fn coincides with fun1.fn on the appropriate carriers for every fn : Fn1. 

In other words, each (nontrivial) extension of an algebra results from that algebra by adding new carriers 

and/or new constructors and/or new elements to the existing carriers.  

Two many-sorted algebras are said to be similar if they have the same signature. In the future, we shall 

frequently define concrete algebras by defining their carriers and constructors but without showing their 

signatures explicitly. In that case, we shall say that two algebras are similar if it is possible to construct a 

common signature for them. 

If Alg1 and Alg2 are similar, then we say that Alg1 is a subalgebra of Alg2 if: 

1. the carriers of Alg1 are subsets of the corresponding carriers of Alg2, 

2. the constructors of Alg1 coincide with constructors of Alg2 on the carriers of Alg1. 

Therefore every subalgebra of an algebra is a restriction of that algebra but not vice versa. By a many-sorted 

homomorphism from algebra Alg1 into a similar algebra Alg2 where 

Algi = (Sig, Cari, Funi, cari, funi)   for i = 1,2 

we call a family of functions  

H = {h.cn | cn : Cn} 

whose elements — called the components of that homomorphism — map the elements of Alg1 into the 

elements of Alg2, hence  

h.cn : car1.cn ⟼ car2.cn  for all cn : Cn 

and where for every constructor name fn : Cn such that 

ar.fn = (cn1,…,cnn)  where n ≥ 0 

and every tuple of arguments 

(a1,…,an) : car1.cn1 x … x car1.cnn 

the following equality holds 

h.cn.(fun1.fn.(a1,…,an)) = fun2.fn.(h.cn1.a1,…,h.cnn.an)                           (2.12-1) 

In other words a homomorphic image of the value of a function fun1.fn from the first algebra with arguments 

(a1,…,an) equals the value of the corresponding function fun2.fn from the second algebra applied to the tuple 

of homomorphic images of the first tuple i.e. applied to (h.cn1.a1,…,h.cnn.an). Notice that for n = 0 the 

equality (2.12-1) has the form 

h.cn.(fun1.fn.()) = fun2.fn.()  

The fact that H is a homomorphism from Alg1 into Alg2 shall be written as: 

H : Alg1 ⟼ Alg2 

Our definition of homomorphism implies that if some carriers of the algebra Alg1 are empty, then the 

corresponding components of the homomorphism have to be empty as well. An algebra where all carriers are 

empty is called an empty algebra.  

In the general case, homomorphisms do not map algebras onto algebras but into algebras, which means 

that not every element in Alg2 must be an image of an element form Alg1. For instance an identity 

homomorphism from integers to numbers 

I2N : (Integer, 1, plus, minus) ⟼ (Number, 1, plus, minus) 

is not “onto”, whereas a homomorphism from integers into even integers 

 I2E : (Integer, 1, plus, minus) ⟼ (Even, 1, plus, minus) 
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defined by the equality I2E.int = 2*int is “onto”. In the general case a homomorphism H : Alg1 ⟼ Alg2 is 

called: 

• a monomorphism — if all its components are one-to-one functions; e.g., I2N and I2E, 

• an epimorphism  — if all its components are “onto”; e.g., I2E 

• an isomorphism  — if it is both a monomorphism and an epimorphism; e.g., I2E.  

Theorem 2.12-1 For every homomorphism  H : Alg1 ⟼ Alg2, the image of Alg1 in Alg2, i.e., the restriction 

of Alg2 to the images through H of Alg1 with the appropriate truncation of constructors of Alg2 constitutes 

a subalgebra of Alg2. ■ 

Proof  To prove our theorem, we have to show that the images in Alg2 of the carriers of Alg1 are closed 

under the operations of Alg2. Let then (b1,…,bn) from Alg2, be the image of (a1,…,an) in Alg1, i.e. let: 

(b1,…,bn) = (h.cn1.a1,…,h.cnn.an) 

Let furthermore for some function name fn 

fun2.fn.(b1,…,bn) = b 

We have to show that b has a coimage in Alg1. It is indeed the case since on the ground of (2.12-1): 

fun2.fn.(b1,…,bn) = fun2.fn.(h.cn1.a1,…,h.cnn.an) = h.cn.(fun1.fn.(a1,…,an)) 

hence h.cn.(fun1.fn.(a1,…,an)) is the coimage of b in Alg1. ■ 

An algebra, which is the image of a homomorphism, Alg1 ⟼ Alg2 is called the kernel of the 

homomorphism H in Alg2. 

All our investigations about homomorphisms can be generalized to the case where the signatures of two 

algebras 

Sigi = (Cni, Fni, ari, soi)   for i = 1,2 

are not identical but are similar in the sense that there exist two reversible functions of similarity 

Sn : Cn1 ⟼ Cn2 
Sf  : Fn1 ⟼ Fn2 

such that if  

Sf.fn1 = fn2 
ar1.fn1 = cn11,…,cn1p 
ar2.fn2 = cn21,…,cn2m 

then 

p = m 
Sn.cn1i = cn2i  for  i = 1;p 

In other words, two signatures are similar if they have the same number of carrier names and function names, 

and the corresponding function names have identical arities and sorts up to the names of carriers. 

Now we can generalize the notion of the similarity of algebras: two algebras shall be called similar if their 

signatures are similar. For any fixed functions, Sn and Sf the concept of homomorphism, and the 

corresponding theorems remain valid for the generalized similarity.  

2.13 Abstract syntax and reachable algebras 

Every signature 

Sig = (Cn, Fn, ar, so) 
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unambiguously determines a certain algebra with that signature and with formal languages as carriers. This 

algebra is called abstract syntax over signature Sig and will be denoted by AbsSy(Sig)14. The elements of 

its carriers are words of a many-sorted formal language  

{Lan.cn | cn : Cn} 

defined by an equational grammar (see Sec.2.6) in a way described below. 

To every carrier name cn we associate a language denoted by Lan.cn. The tuple of all these languages is 

defined by an equational grammar where for every cn : Cn we have the following equation15: 

Lan.cn = {fn1} © {(} © Lan.cn11 © {,} © … © {,} © Lan.cn1n(1) © {)} | 
…                                      (2.13-1) 
  {fnk} © {(} © Lan.cn1 © {,} © … © {,} © Lan.cnn(k) © {)} 

Here fni for i = 1;k are function names with 

so.fni = cn 

and  

ar.fni = (cni1,…,cnin(i))   for  i = 1;k 

We assume that if for a carrier name cn there is no function name fn such that so.nf = cn, then the 

corresponding language is empty, i.e. its defining equation is: 

Lan.cn = Ø 

For every non-empty Lan.cn, its elements are words of the form 

fni(wi1,…,win(i)) 

i.e. of the form fni © ( © wi1 © … © win(i) ©) where © is the concatenation of words and 

wik : Lan.cnk. 

In this place, it is worth noticing that if there are no zero-argument functions’ names (constants) in the 

signature, then all languages (carriers) of the corresponding abstract syntax are empty.  

Since abstract syntaxes are generated from signatures, they may be associated with arbitrary algebras 

(through their signatures). If Alg is an algebra with signature Sig, then AbsSy(Sig) will be called the abstract 

syntax of algebra Alg. For instance, if AlgIntBoo is the two-sorted algebra described in Sec.2.11 then the 

carrier of its abstract syntax are defined by the following equational grammar, where NumExp and BooExp 

are languages of integer expressions and boolean expressions respectively: 

NumExp =                                  (2.13-1) 
0          | 
1           |  
plus(NumExp, NumExp)   |  
minus(NumExp, NumExp)  | 
times(NumExp, NumExp)  |  
divide(NumExp, NumExp)  

 
BooExp =  

tt           |  

 

14 The idea of an abstract syntax regarded as a mathematical idealization of a syntax of a programming language 
appeared for the first time in papers of J. McCarthy [65] and P. Landin [59] but with abstract algebras was for the first 
time associated by J.A. Goguen, J.W. Thacher, E.G. Wagner and J.B. Wright [51]. A little later we used that concept 
in an attempt to give a formal semantics to a subset of Pascal [24]. In this book abstract syntax is understood in a 
slightly different way (technically) but the idea is roughly the same.  

15 We assume, of course, that the commas “,” and the parentheses “(“ and “)” do not appear in the signature as 
constructors’ names.  
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ff           |  
less(NumExp, NumExp)   |  
equal(NumExp, NumExp)  | 
or(BooExp, BooExp)    |  
and(BooExp, BooExp)   |  
not(BooExp) 

In this grammar, we use four notational conventions that we shall assume as standards for future use: 

1. characters and words such as 0, 1, plus, (, ) etc. that appear at the level of syntax are typeset with Arial 
Narrow, whereas NumExp and BooExp are typeset in Arial, since they are metavariables from the 

level of MetaSoft, 

2. one-element sets are identified with their elements, i.e. instead of {a} we write a, 

3. the values of zero-argument constructors are written without the empty tuples of arguments, i.e. instead 

of 1() we write 1, 

4. the concatenation sign © is omitted, e.g., instead of a © b we write ab, 

Examples of a numeric and a boolean abstract-syntax expressions written in this style are the following: 

• plus(plus(minus(1,0),1),plus(1,1)) 

• or(less(plus(plus(minus(1,0),1),plus(1,1)),plus(1,1)),ff) 

As we see, the expressions of our languages do not contain variables and are written in a prefix notation where 

function symbols always precede their arguments. E.g., we write plus(1,1) instead of (1 plus 1). The latter style 

is called infix-notation.  

In the syntactic algebra defined by our grammar, the elements of carriers are numeric and boolean 

expressions, respectively (without variables), and constructors correspond to constructor names from our 

signature. For instance, with a constructor name plus, we associate a constructor [plus] of the algebra 

AbsSy(Sig) defined by the equation 

[plus].[num-exp1, num-exp2] = plus(num-exp1,num-exp2)16 

This constructor, given two expressions num-exp1 and num-exp2 returns the expression of the form 

plus(num-exp1,num-exp2). E.g. given times(x,y) and plus(z,y)returns  

plus(times(x,y),plus(x,y)) 

Now we can formulate a theorem which is fundamental for denotational models of programming languages. 

Theorem 2.13-1 For every many-sorted algebra Alg with a signature Sig there is exactly one homomorphism 

H : AbsSy(Sig) ⟼ Alg. ■ 

Proof Every homomorphism H : AbsSy(Sig) ⟼ Alg must (from the definition) satisfy the equation: 

H.cn.[fn(w1 , … , wn )] = fun.fn.[H.cn1.w1,…,H.cnn.wn] 

where 

ar.fn = (cn1,…,cnn) 
so.fn = cn 
wi : Lan.cni  for  i = 1;n 

Since every word in abstract syntax is of a unique (for it) form fn(w1 , … , wn), the above equations (for all 

fn) define the family {H.cn | cn : Cn} in an unambiguous way. In the case of empty carriers of AbsSy(Sig) 
the corresponding components of H are empty. ■ 

 

16 The meta-parentheses “[“ and “]” are introduced in order to distinguish them from parentheses that belong to the 
defined language.   
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The unique homomorphism from AbsSy(Sig) to Alg will be called the semantics of abstract syntax. For 

instance, if by {N, B} we denote the semantics of abstract syntax of AlgIntBoo, then this homomorphism 

maps boolean expression less(plus(1,1), times(1,1)) into the boolean value ff: 

B.[less(plus(1,1),times(1,1))] =  

fun.less.(N.[plus(1,1)], N.[times(1,1)]) =  

fun.less.(fun.plus.(N.[1],N.[1]), fun.times.([N.[1], N.[1])) = 

fun.less (fun.plus(1,1), fun.times(1,1)) = ff 

On the ground of theorems 2.12-1 and 2.13-1, in every algebra Alg, there is a unique subalgebra which is the 

kernel of the semantics of abstract syntax of Alg. That algebra is called the reachable subalgebra of Alg. This 

name expresses the fact that every element of that algebra can be constructed (reached) by using the 

constructors of the algebra. For instance, the reachable subalgebra of the algebra  

(IntegerE, 1, plus, divide) 

is the algebra of positive rational numbers 

(PosRat, 1, plus, divide) 

since only such numbers can be constructed from 1 in using plus and divide. Notice that if we remove 1 from 

the algebra of numbers, then its reachable subalgebra becomes empty and consequently its algebra of abstract 

syntax will be empty as well. 

An algebra is called reachable if it coincides with its reachable subalgebra. In particular, every algebra of 

abstract syntax is reachable. Reachable is also every empty algebra. Now, we can formulate two important 

theorems. 

Theorem 2.13-2 For any two similar algebras Alg1 and Alg2, if Alg1 is reachable, then there is at most one 

homomorphism 

H : Alg1 ⟼ Alg2, 

and if this is the case, then the image of Alg1 in Alg2 is reachable. ■ 

 

Fig. 2.1.3-1 Reachable algebras 

Proof. The theorem and its proof are illustrated in Fig. 2.1.3-1. Since Alg1 and Alg2 are similar, they must 

have a common signature Sig and a common abstract syntax AbsSy(Sig). Therefore — on the ground of 

Theorem 2.13-1 — there exist two unambiguously defined semantics of abstract syntaxes  

D1 : AbsSy(Sig) ⟼ Alg1 and 

D2 : AbsSy(Sig) ⟼ Alg2  

Now, if there exists a homomorphism H : Alg1 ⟼ Alg2, then the composition 
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D1 ● H : AbsSy(Sig) ⟼ Alg2 

defined as the composition of their components is a homomorphism. Since D2 is the unique homomorphism 

between these algebras, we have 

D1 ● H = D2, 

and since Alg1 is reachable, the above equation defines H unambiguously, because otherwise, we could define 

another homomorphism from AbsSy(Sig) into Alg2 which would contradict Theorem 2.13-1. This proves 

that the image of Alg1 in Alg2 is reachable. ■ 

As an immediate consequence of this theorem we have another theorem: 

Theorem 2.13-3 For every nonempty algebra Alg over signature Sig the following claims are equivalent: 

(1) Alg is reachable, 

(2) every homomorphism of the type H : Alg1 ⟼ Alg (for an arbitrary Alg1) is onto, 

(3) the semantics of abstract syntax D : AbsSy(Sig) ⟼ Alg is onto. ■ 

Proof Let Alg be reachable and let for some Alg1 similar to Alg there exist a homomorphism 

H : Alg1 ⟼ Alg, 

and let 

D : AbsSy(Sig) ⟼ Alg1 

be the abstract-syntax semantics of Alg1. In that case 

D ● H : AbsSy(Sig) ⟼ Alg 

is the abstract-syntax semantics for Alg, hence, since Alg is reachable, then D ● H must be onto, and therefore 

also H must be onto. Hence (1) implies (2). Now (3) follows from (2) as its particular case, and (2) implies (1) 

by the definition of reachability. ■ 

At the end of this section, one more useful theorem: 

Theorem 2.13-4 An algebra has a nonempty reachable subalgebra if and only if it contains at least one zero-

argument constructor. ■ 

Proof If there is a constant in the algebra, then it belongs to its reachable part, and hence, this part is not 

empty. If, however, such o constant does not exist, then in the grammar corresponding to that algebra, there 

are no constant monomials, and therefore all the carriers of abstract syntax are empty. Therefore the reachable 

part of Alg is an empty algebra. ■ 

Abstract syntaxes are, in general, not very convenient in practical programming, and therefore they are 

usually replaced by more user-friendly syntaxes historically called concrete syntaxes. In such a case, elements 

of abstract syntax correspond to parsing trees of concrete expressions (see, e.g. [3]).  

2.14 Ambiguous and unambiguous algebras 

An algebra Alg with a signature Sig is said to be unambiguous if its abstract-syntax semantics 

D : AbsSy(Syg) ⟼ Alg 

is a monomorphism, i.e., if for every carrier Car.cn of Alg and every element e of that carrier there is at most 

one word w : Lan.cn in the abstract syntax AbsSy(Syg) such that  

D.cn.w = e 

Algebras which are not unambiguous are called ambiguous. 
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Algebras of denotations of programming languages are practically always ambiguous. For instance, the 

algebra AlgIntBoo described in 2.11  is ambiguous since, e.g., two different words plus(plus(1,1),1) and 

plus(1,plus(1,1)) correspond to the same number 3.  

 

Fig. 2.1.3-1 Two ambiguous algebras 

Now consider two algebras Alg1 and Alg2 with a common signature Sig hence also with a common abstract 

syntax SkAbs(Sig). Let 

D1 : SkAbs(Sig) ⟼ Alg1 

D2 : SkAbs(Sig) ⟼ Alg2 

be two corresponding abstract-syntax semantics. Algebra Alg1 is said to be less (or equally) ambiguous than 

algebra Alg2, what we shall writer as 

Alg1 ≼  Alg2 

if the homomorphism D2 is gluing not more than D1 (Fig. 2.1.3-1), i.e., if for any two words w1 and w2 in 

abstract syntax that belong to the same carrier Car.cn the following implication holds: 

if   D1.cn.w1 = D1.cn.w2   then   D2.cn.w1 = D2.nn.w2           

Intuitively speaking, whenever an element of Alg1 may be constructed in two different ways, the two ways 

lead to the same element in Alg2. 

Ambiguous algebras play a certain role in the theory of programming languages since, for the majority of 

existing languages, their algebras of concrete syntax — if formally described — would turn out to be 

ambiguous. To explain this fact assume that AbsSy(Sig) is defined by the grammar 

NumExp = 0 | 1 | +(NumExp, NumExp), 

Alg1 is an algebra of infix expressions without parentheses defined by the grammar 

NumExp = 0 | 1 | NumExp + NumExp 

and Alg2 is the algebra of integers. Let now D1 replaces prefixes by infixes and removes parentheses.  

Anticipating the considerations of Sec. 3, the algebra of numbers is the algebra of denotations (of 

meanings) for both our algebras of numeric expressions and the homomorphism D2 is the denotational 

homomorphism (the semantics) of the algebra of abstract syntax. Now, we may raise a question, if there exists 

a denotational homomorphism  

D12 : Alg1 ⟼ Alg2 

from parentheses-free expressions into numbers.  
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To answer this question notice that for such algebras and their corresponding homomorphisms the 

following equalities hold: 

D1.[+(+(1,1),1)] = 1+1+1  D2.[+(+(1,1),1)] = 3 

D1.[+(1,+(1,1)] = 1+1+1  D2.[+(1,+(1,1)] = 3 

As we see D1 is gluing not more than D2. In “practical mathematics”, hence also in programming languages, 

we frequently omit “unnecessary parentheses” whenever we deal with associative operations. The 

corresponding algebras are, in general, ambiguous, and therefore, the denotational homomorphism D12 need 

not exist. If however, they are not more ambiguous than the algebras of denotations, then such a 

homomorphism exist which follows from the following theorem: 

Theorem 2.14-1 If Alg1 and Alg2 are similar and Alg1 is reachable, then the (unique) homomorphism  

D12 : Alg1 ⟼  Alg2 exists iff Alg1 ≼  Alg2. ■ 

This unique homomorphism may be constructed as (intuitively speaking) the composition of the inverse of D1 

with D2, i.e. 

D12 = D1
-1 ● D2. 

Although the inverse of D1 maps the elements of Alg1 into sets of abstract expressions, yet all these 

expressions are mapped by D2 into the same element of Alg2. For formal proof of this theorem, see [27].  

Of course, if D1 is an isomorphism then Alg1 is “equally ambiguous” as Alg2, and therefore the 

homomorphism D12 exists. 

2.15 Algebras and grammars 

The first step in the process of programming-language construction consists in defining an algebra of 

denotations from which we derive a unique algebra of abstract syntax. Since the latter is usually not user-

friendly, we transform it into a concrete syntax (cf. Sec. 2.13) using a homomorphism that does not glue more 

than abstract-syntax semantics. Since in a user manual concrete syntax should be described by an equational 

grammar, we should raise a question, whether for any algebra of concrete syntax a corresponding grammar 

exists. To treat this problem formally, we need the concepts of a skeleton function.  

A function f on words over an alphabet A is said to be a skeleton function if there exists a tuple of words 

(w1,…,wk, wk+1) over A, called the skeleton of this function such that  

f.(x1,…,xk) = w1x1…wkxnwk+1 

An example of a skeleton function may be 

f.(exp-b,ins1,ins2) = if exp-b then ins1 else ins2 fi 

The skeleton of this function is (if, then, else, fi). Notice that the function 

f.(exp-b, ins1, ins2) = if exp-b then ins2 else ins1 fi 

is not a skeleton function since the order of arguments on the left-hand side of our equation does not coincide 

with the order on its right-hand side.  

In particular cases, a skeleton function may have more than one skeleton. E.g. the one-argument function 

f : {a}* ⟼ {a}*  

defined by equation 

f.(x) = x a 

has two skeletons ((), a) and (a, ()), since it may be equivalently defined by the equation 

f.(x) = a x 
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However, if we change the type of the function f to f : {a, b}* ⟼ {a, b}* without changing the defining 

equation, then this function has only one skeleton ((), a).  

A many-sorted algebra will be called a syntactic algebra if it is a reachable algebra of words. 

A syntactic algebra will be called a context-free algebra if all its constructors are skeleton functions. Of 

course, algebras of abstract syntax are context-free. As was shown in Sec. 2.13, for each such algebra, we can 

build an equational grammar that defines its carriers and constructors. Similarly, we may assign an equational 

grammar for any context-free algebra. 

Theorem 2.15-1 For every context-free algebra, there is an equational grammar that generates is carriers. ■ 

The following theorem is also true: 

Theorem 2.15-2 For every equational grammar there is a context-free algebra with carriers defined by that 

grammar. ■ 

Proof Let 

X1 = pol1.(X1,…,Xn) 
…                  
Xn = pol1.(X1,…,Xn) 

be an equational grammar with the (unique) solution (L1,…,Ln). Assume that the polynomials of that grammar 

are expressed as unions of monomials. The corresponding algebra 

Alg = (Sig, Car, Fun, car, fun),   

is defined in the following way: 

• Sig = (Nc, Nf, ar, so) 

• Nc = {cn1,…,cnn} ― carriers’ names are arbitrary, but the number of these names must be equal to the 

number of equations in the grammar, 

• Nf = {fn1,…,fnm} ― function names are arbitrary, but the number of these names must be equal to the 

number of monomial occurrences in the grammar, 

• ar and so are defined in that way, that they correspond to the arities and sorts of monomials in the 

grammar, 

• Car = {L1,…,Ln}, 

• Fun ― the set of all monomials in our grammar, 

• car.cni = Li  for  i = 1,…,n 

Notice now that every mononomial in our grammar is (from the definition) a Chomsky’s mononomial (see 

Sec. 2.6), hence satisfies the equation: 

car.cni(x1,…,xn) = {s1} x1 … {sk} xk {sk+1) 

This completes the definition of our algebra. Observe that the defined algebra is unique up to the names of 

carriers and constructors.  

We can show that the carriers of Alg are closed wrt all its constructors and that the algebra is reachable. 

For this proof see [27]. ■ 

Below is a simple example showing how to construct an algebra from a grammar. Consider the following 

grammar of a two-sorted language 

Number = 1 | x | Number + Number 

Boolean = Number < Number | Boolean & Boolean 
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For simplicity, curly brackets for function names have been dropped. The operations of our grammar are 

defined by the following equations (the symbols of concatenation © has been omitted as well) where n-exp 

and b-exp with indexes denote numerical and boolean expressions, respectively: 

one.()       = 1 

variable.()      = x 

plus.(n-exp1, n-exp2)  = n-exp1 + n-exp2 

less.( n-exp1, n-exp2) = n-exp1 < n-exp2 

and.( b-exp1, b-exp2) = b-exp1 & b-exp2 

An equational grammar is said to be unambiguous (resp. ambiguous) if the corresponding algebra is 

unambiguous (resp. ambiguous). Intuitively a grammar is ambiguous if there exists a word w that can be 

generated by that grammars in two different ways17. These “different ways” are different elements of the 

abstract syntax that are coimages of w wrt the abstract-syntax semantics (see Sec. 2.13). For instance, the word 

1+1+1 may be generated in two different ways: 

plus(1,plus(1,1) 

plus(plus(1,1),1) 

As has been already mentioned, a concrete syntax of a programming language will be constructed as a 

homomorphic image of its abstract syntax. Since these syntaxes will be described by equational grammars, it 

is important to know which homomorphisms of syntactic algebras do not lead out of the class of context-free 

algebras.  

Let us start with an example of a homomorphism that destroys the context-freeness of an algebra. Let Alg 

be a one-sorted algebra with the carrier {a}+ and with two operations: 

h.() = a 

f.(x) = x a 

This algebra is of course, context-free. Now consider a similar algebra with a carrier  

{anbncn | n = 1,2,…} 

and constructors 

h.() = abc 

f.(anbncn) = an+1bn+1cn+1 

This algebra is not context-free since its carrier is a well-known example of a not context-free language (see 

[49]), but it is isomorphic with our former algebra where the corresponding isomorphism is: 

I.an = anbncn  for every n ≥ 1 

As is easy to see this isomorphism is not a skeleton function.  

A homomorphism H between two syntactic algebras is called a skeleton homomorphism (we recall that 

since syntactic algebra are reachable, such a homomorphism, if exists, is unique (Theorem 2.13-3))  if for 

every constructor fun.fn of the source algebra, for which  

so.fn = cn 

 

17 The usability of ambiguous grammars also from the perspective of parsing was investigated in 1972 by 

A.V. Aho and J.D. Ullman in [3]. 
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ar.fn = (cn1,…,cnn) 

there exists a skeleton (s1,…,sn+1), such that 

H.fn.(fun1.fn.(x1,…,xn)) = s1 x1…snxnsn+1 

In other words, a homomorphic image of every constructor of the source algebra is a skeleton constructor in 

the target algebra. 

Theorem 2.15-3 For every syntactic algebra Alg the following facts are equivalent: 

(1) Alg is context-free, 

(2) every homomorphism into Alg is a skeleton homomorphism, 

(3) there exists a skeleton homomorphism into Alg. 

For proof, see [27]. 

Let us consider now a simple example of a process of constructing a syntactic algebra for a given algebra18. 

Let the latter be a one-sorted algebra of numbers with three operations: 

create-nu.1 :        ⟼ Number 

plus    : Number x Number ⟼ Number 

times   : Number x Number ⟼ Number 

The corresponding abstract syntax, denote it by Syn-0, is defined by the following grammar with only one 

equation, where Exp denotes a language of numerical expressions with constant values: 

Exp = create-nu.1.() |  plus(Exp, Exp)  |  times(Exp, Exp) 

The first step on our way to final syntax consists in: 

• replacing create-nu.1 by 1, 

• replacing plus and times by + and *, 

• replacing prefix notation by infix notation. 

This step corresponds to the following homomorphism: 

H.[create-nu.1.()] = 1 

H.[plus(exp1,exp2)] = (H.[exp1] + H.[exp2]) 

H.[times(exp1,exp2)] = (H.[exp1] ٭ H.[exp2]) 

This is of course a skeleton homomorphism and the corresponding context-free grammar is the following: 

Exp = 1 | (Exp + Exp) | (Exp ٭ Exp) 

In the second and the last step of syntax construction we would like to allow dropping out “unnecessary parentheses”, 

e.g. writing 1+1+1 instead of (1+(1+1)) and analogously for multiplication. Unfortunately this turns out to be impossible 

since each homomorphism which removes parentheses has to satisfy the equations: 

H.[(exp1 + exp2)] = H.[exp1] + H.[exp2] 

H.[(exp1 ٭ exp2)] = H.[exp1] ٭ H.[exp2] 

but this would mean that it glues expressions with different denotations, e.g. 

H.[(1+1)*(1+1)] = H.[((1+(1*1))+1)] = 1+1*1+1 

Although H is a skeleton homomorphism, which implies that its target grammar 

Exp = 1 | Exp + Exp | Exp * Exp 

 

18 In more general terms such processes will be discussed in Sec. 3.4.  
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is context-free, the corresponding algebra is more ambiguous than the algebra of integers, hence a denotational 

semantics of this syntax into the algebra of numbers does not exist.  

A known traditional way of solving this problem as e.g. in Algol ([5] and [71]) or in Pascal [56] consists 

in reconstructing the whole model of the language by introducing to the algebra of denotations and to the 

algebra of syntax three carriers Com (component), Fac (factor) and Exp (expression) and the following 

signature: 

c-to-e : Com   ⟼ Exp      component to expression identically 

+   : Exp + Com ⟼ Exp      addition 

f-to-c  : Fac    ⟼ Com     factor to component identically 

*   : Fac * Com  ⟼ Com     multiplication 

1   : Fac    ⟼ Fac      the generation of 1 as a factor 

e-to-c : Exp    ⟼ Fac      expression to factor identically 

The corresponding grammar of abstract syntax is the following: 

Exp = c-to-e(Com)| +( Exp, Com) 
Com = f-to-c(Fac) | *(Fac, Com) 
Fac = 1 | (Exp) 

and for the first (isomorphic) transformed syntax: 

Exp = (Com) | (Exp + Com) 
Com = (Fac) | (Fac * Com) 
Fac = 1 | (Exp) 

In this grammar the names of identity functions have been omitted, which, however, does not destroy the 

unambiguity of the grammar, since these names appear in the elements of different carriers. 

Now we can define a skeleton homomorphism that removes parentheses in each of three sorts of 

expressions: 

E.[(com)]    = com 
E.[(com + exp)]  = E.[exp] + S.[com] 
C.[(fac)]    = C.[fac] 
C.[(fac ٭ com)] = F.[fac] ٭ C.[com] 
F.[1]     = 1 
F.[(exp)]   = (exp) 

This leads to the following context-free grammar 

Exp  = Com | Exp + Com 
Com = Fac | Fac ٭ Com  
Fac  = 1 | (Exp)     

This grammar may be also written in a direct way in using the constructor of iteration: 

Exp  = Com [+ Com]*    an expression is a sum of components 

Com = Fac [٭ Fac]*     a component is a multiplication of factors19 

Fac  = 1 | (Exp)      a factor is a constant or an expression in parentheses 

Observe that the parentheses-removal homomorphism is not an isomorphism, since it glues (1+(1+)) and 

((1+1)+1) into 1+1+1 and similarly for multiplication. However it does not glue “to much” since addition and 

multiplication are associative. On the other hand from expression ((1+1)*(1+1)) it removes only external 

parentheses.  

 

19 Note the difference between the operation of multiplication ٭, e.g. as in 11٭ and the operation of the iteration of 

languages *, e.g. as in [+ Com]*.     
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The denotational homomorphism for our grammar is now the following: 

Se.[com]    = Ss.[com] 
Se.[exp + com]  = Se.[exp] + Sc.[com]  
Ss.[fac]    = Sc.[fac] 
Ss.[fac ٭ com]  = Sc.[fac] ٭ Ss.[com] 
Sc.[1]     = 1 
Sc.[(exp))    = Se.[exp] 

Notice that the above equations express the school rules of priority of multiplication over addiction.  

 

Commentary 2.15-1 

The reader to whom we have promised that denotational models of programming languages will offer readable 
definitions may have some doubts in this moment. So far, the simple language of arithmetic expressions that is very 
well known to every ground-school student has been described in a rather complicated way and moreover using 
advanced mathematics. This, of course, requires a commentary. 

First, what we can say to a student in a simple way, when “talking” to a computer, we have to express in a way 
appropriate for the interpreter. That “appropriate way” is a denotational homomorphism, which may be mapped one-
to-one into a code of an interpreter.  

Second, the discussed language serves only to illustrate the denotational method in an elementary example. 
The real advantage of the method will be appreciated  (we hope) when we introduce more advanced programming 
mechanisms such as declarations, types, instructions, recursive procedures, objects, etc. whose definitions require 
more advanced mathematical tools. 

Third, in writing a user’s manual for our language, we may directly refer to our acquaintance with school 
mathematics by saying that numerical expressions can be written and are calculated in a “usual way”, which frees us 
from the necessity of showing a grammar. However, as we shall see in Sec. 3.4 there are better solutions to that 
problem called colloquial syntax. 

 

Two following lessons may be learned from our exercise: 

First, the description of the simple operation of dropping out unnecessary parentheses requires rather 

complicated and not very intuitive grammar. Such a grammar is necessary for the implementor but not for the 

user, who can be simply informed that numerical expressions are written and understood in a “usual way”.  

Second, the idea of dropping parentheses came out only at the level of second syntactic algebra, when the 

two formers have already been defined. Therefore, to implement the parenthesis-free notation one has to restart 

the construction of the model from scratch. In our simple example, this does not lead to too much work, but 

in real situations, things may look different. To avoid such problems, one should think about syntax as early 

as on the level of the algebra of denotations. This, however, contradicts the philosophy “from denotations to 

syntax” and also ruins the principle that denotations should be constructed in a maximally simple way.  

The above problems had been investigated in [25], [27], and [35]. A solution suggested there consists in 

assuming that the programmer’s syntax that will be called colloquial syntax does not need to be a 

homomorphic image of concrete syntax. In our example concrete syntax would be defined by the grammar: 

Exp = 1 | (Exp + Exp) | (Exp ٭ Exp) 

and colloquial syntax ― which allows for (although it does not force) the omission of parentheses ― would 

be defined by the grammar: 

Exp = 1 | (Exp + Exp) | (Exp ٭ Exp) | Exp + Exp | Exp ٭ Exp 

Observe that the algebra of colloquial syntax is not only not-homomorphic to the former but is even not similar 

since it has a different signature (has more constructors).  

Note, however, that it is easy to define a transformation that would map our colloquial syntax “back” into 

concrete syntax by adding the “missing” parentheses. Such a transformation will be called a restoring 

transformation. In practice, this approach leads to a user manual that contains a formal definition of concrete 
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syntax (a grammar) plus an informal rule which says, e.g., that parentheses may be omitted in the “usual 

way”20.  

In the general case, a restoring transformation may be described formally or informally according to the 

complexity of colloquialization. Its formal definition is, however, always necessary for implementors who 

have to write a procedure that converts each colloquial program into its concrete version.  

More on colloquial syntax in Lingua in Sec. 7.4. 

In the end, one methodological remark seems necessary. Languages discussed in this section covered only 

expressions without variables. Such a case has, of course, no practical value, and it was chosen only to make 

examples of algebras and corresponding grammars possibly simple. Starting from Sec. 4 we shall discuss 

methods of constructing denotational models for more realistic languages.   

2.16 Abstract-syntax grammar is LL(k) 

Our equational grammars are equivalent to (well known in the literature) context-free grammars and the latter 

play an important role in the theory of the syntax of programming languages. Especially wanted context-free 

grammars are LL(k) grammars, since  their corresponding parsers are efficient and simple to build. To show 

that our abstract syntax grammars are LL(k), let’s redefine this concept for equational grammars. 

Consider an arbitrary equational grammar EG that generates a tuple of languages (Lan-1,…,Lan-n) over 

an alphabet Ter of characters called terminals. The elements of Lan-i’s will be called words. Every equation 

of EG is the following formula 

Syn-i = w-i1 | … | w-ip(i)  for  1≤ i ≤ n                    (7.2-1) 

where: 

• Syn-i are metavariables corresponding to syntactic domains; we shall call them nonterminals, 

• w-ij are metawords written over an alphabet Alp = Ter | {Syn-1,…,Syn-n},  

Our grammar will be said to be strongly prefixed, if every w-ij is not empty, and starts with a terminal. Let’s 

define an auxiliary function of the k-the prefix of a word (a-1,…,a-n): 

prefix : Alpc* x {1, 2, …} ⟼ Alpc* 
prefix(w, k) = 
 w = () ➔ () 
 let 
  (a-1,…,a-n) = w 
 n ≤ k  ➔ w 
 true  ➔ (a-1,…,a-k) 

For a positive integer k, a strongly prefixed grammar with equations (7.2-1) is said to be a LL(k) grammar21, 

if for every index 1≤ i ≤ n, any two different metawords in the i-th equation, w-ij and w-ip, have different k-

th prefixes, i.e., prefix(w-ij, k) ≠ prefix(w-ip, k). Note that metawords of different equations do not need to 

satisfy this condition.   

In a LL(k) grammar, given a word w to be parsed, and a non-terminal Syn-i that determines the category 

of this word, we need to look ahead not more than k first characters of w to identify the grammatical clause to 

be used in parsing w. This property of LL(k) grammars allows to build for them relatively simple deterministic 

parsers.  

 

20 As we are going to see in Sec. Błąd! Nie można odnaleźć źródła odwołania.,Błąd! Nie można odnaleźć źródła 
odwołania. the situation may be a little more complicated. 

21 The original concept of a LL(k) grammar is not restricted to strictly prefixed grammar, but in that case the definition is 
a little more complicated, and requires the introduction of some additional concepts. On the other hand, the restriction 
to strictly prefixed grammar is not harmful for our model, since our abstract-syntax and concrete-syntax grammars will 
be strictly prefixed anyway. 
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As is easy to check, our abstract-syntax grammar is LL(k) for some k, since all green prefixes of clauses 

are different to each other.  
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3 AN INTUITIVE INTRODUCTION TO DENOTATIONAL 

MODELS 

3.1 How did it happen? 

Mathematicians building mathematical models of programming languages were usually assuming (as in 

mathematical logic) that a programming language should be described by three mathematical entities: 

1. Den — denotations, which in our model constitute a many-sorted algebra (Sec. 2.12), 

2. Syn — syntax, which in our model is an algebra similar to the former (has the same signature), 

3. Sem : Syn ⟼ Den — semantics, that associates denotations to syntactic elements, and in our model 

is a homomorphism between two mentioned algebras. 

Intuitively speaking, a denotational semantics describes the meaning of every complex syntactic object as a 

composition of the meanings of its components. This property of semantics — called compositionality — 

allows for the description of complex objects by means of so-called structural induction. 

It should be mentioned in this place that denotational (compositional) models of semantics — which for 

mathematicians have always been an obvious choice — have not been used in the first formal models of 

programming languages. Similarly to the prototypes of sewing machines that were mechanical arms repeated 

the movements of a tailor, and to the first steamboat engine droving oars, the early formal definitions of 

programming languages were mathematical descriptions of virtual computers executing programs22.  

Such model of semantics, called later operational semantics, were abandoned after a few years of 

experiments because descriptions of virtual machines were not less complex than the codes of a compilers, 

and still they weren’t descriptions of  “real” machines23. 

However, the road to denotational semantics wasn’t simple either. As was already mentioned, early 

denotational models of programming languages were characterized by great mathematical complexity. 

Technically it was the consequence of the assumption that two following mechanisms were indispensable in 

high-level programming languages: 

1. the jump instruction goto that transfers program execution from one line of code to another one; this 

mechanism was available in practically all programming languages in the years 1960/70, and was 

inherited from low-level languages, where it was the only tool for building logical structures of 

programs, 

2. procedures that may take themselves as parameters; this construction was present in Algol 60 (see [5] 

and [71]) considered by academic community of 1960. as an indisputable standard. 

 

22 First metalanguage used to write such semantics in the 1970. was developed in IBM laboratory Vienna and was called 
Vienna Definition Language (VDL). Later some members of the IBM team have created a lab on the Danish Technical 
University in Lyngby with the aim of writing a denotational semantics in a metalanguage called Vienna Development 
Method (VDM) [13]. This language was used, among other applications, to describe the semantics of two programming 
languages — Ada and Chill. In the case of the former, that was expected to become a universal programming language 
of all times, the process of writing its semantics resulted in repairing many inaccuracies of the language, and in 
developing first Ada compiler. Unfortunately, both Chill and Ada were excessively complex, and hence have never 
became commonly used. 

23 To be precise this remark is true for sequential programming only, i.e. without concurrency. An operational semantics 
for concurrent programs was developed by Plotkin [72].  
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Fig. 2.1.3-1 Steamboat moving oars 

The requirement of having goto’s has led to a technically rather complex model of continuations24. That 

semantics was not only technically complex but above all quite far from programmers’ intuition. 

Independently, at the turn of the 1960-ties to 1970-ties, IT professionals began to be aware of a risk imposed 

by goto instruction (see [43]). Programs with goto’s were difficult to understand, and therefore not always 

behave as expected. As a consequence goto’s were abandoned in favor of structural programming mechanisms 

such as if-the-else, while-do-od and similar.  

The continuation model, although technically complex, was based on a traditional mathematics. This can’t 

be said about the model of procedures that take themselves as parameters. Notice that in this case we do not 

talk about recursive procedures that call themselves in their bodies — such a mechanism is described in this 

book by fixed-point equations — but about constructions of the type f.f, where a function takes itself as an 

argument. Such functions were not known to mathematicians, because they can’t be described on the ground 

of classical set theory, let alone that mathematicians never needed such functions.  

In Algol 60 the construction f.f was implemented in such a way, that a procedure f was receiving as a 

parameter not exactly itself, but a copy of its own code, which was inserted into its body during compilation. 

Such an operation was called copy rule. Mathematicians of the decade of 1960. were fascinated by this 

construction because it was challenging the existing concept of a function. As a consequence, the theory of 

reflexive domains was created by Dana Scott and Christopher Strachey [75] and was later described in detail 

by J.E. Stoy in a monograph [74]25. Although some mathematicians were investigating reflexive domains, for 

software engineers this theory was even more difficult, and less intuitive then continuations. Pretty soon it 

turned out also that the self-applicability of procedures was even more error-prone than the use of goto’s. 

Consequently, in later programming languages, self-applicable procedures were abandoned. Unfortunately, 

some researchers decided that denotational semantics should be abandoned as well.  

In the denotational model discussed in this book we use neither continuations nor reflexive domains. In our 

model the denotations of instructions are state-to-state functions where a state “carriers” everything that a 

program needs to be executed: data, types, procedures, classes etc. Simplifying a little a state is a function that 

maps identifiers into these mathematical items. The concept of a state is a natural generalization of a concept 

 

24 First author who introduced that concept — although under a different name of tail functions — was Antoni 
Mazurkiewicz [61]. Under the name of continuations it was introduced in [75] and later and popularized in [53]. 

25 To our colleagues mathematicians we may explain that the idea of reflexive domains was in fact a “hidden realization” 
of copy rule. The authors of this model used the fact that functions definable by programs are computable, hence can 
be "numbered" with natural numbers — each function f may be given a unique number n(f). In this model f(f) meant 
f(n(f)) which can be modelled on the ground of classical set theory. That was in fact a mathematical application of copy 
rule since n(f) may be regarded as the code of procedure f. 
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of a valuation known by mathematicians since the pioneering works of Alfred Tarski [76]. Tarski defined the 

meanings of expressions as functions mapping valuations of variables 

val : Valuation = {x, y, z} → Value 

into values. E.g., the meaning of an expression  

2x+4y  

was a function  

F.[2x+4y] : Valuation → Number 

such that 

F.[2x+4y].val = 2*val.x + 4*val.y 

From there only one step to an observation that the meaning of an instruction 

x := 2x + 4y  

is such a transformation of valuations where the value of x in the new valuation is the value of the expression 

2x+4y in the former. This idea was applied in [17], published in 1971, where Andrzej Blikle described a 

prototype of a denotational semantics of a very simple programming language.  

In turn, the inspiration to abandon the model of reflexive domains came to me from the book of Michael 

Gordon [53], where the author treats Scott’s reflexive domains as “usual sets” with the following commentary 

on page 29: 

We shall not discuss the mathematics involved in Scott’s theory at all; our approach to recursive 

equations26 is similar to an engineering approach to differential equations, namely we assume they have 

solutions but don’t bother with the mathematical justification. 

Andrzej Blikle read Gordon’s book in the year 1981 during a train ride from Copenhagen to Århus, where 

he was going to meet Peter Mosses, a strong proponent of the theory of Dana Scott. The book was, for him, a 

significant breakthrough since, for the first time, he was reading a semantics of a programming language with 

an understanding not only of its mathematics but also of its IT content. The treatment of reflexive domains as 

"usual sets" was a real simplification. He also had the impression that this informal treatment did not lead to 

any mathematical problems. Only later, he realized that Gordon was actually not dealing with self-applicable 

functions. 

The approach of Michael Gordon, although intuitively simple, was mathematically not entirely acceptable 

since reflexive domains are not “usual” sets. It wasn’t, therefore, clear, whether his model did not include 

inconsistencies.  

To cope with this problem, A.Blikle and A. Tarlecki published in 1983 a paper [34], in which they 

constructed a denotational model of a programming language, where the domains of denotations are sets, and 

the denotations of instructions are state-to-state transformations. This approach stimulated in 1980-ties the 

creation of a metalanguage MetaSoft [24] in the Institute of Computer Science of the Polish Academy of 

Sciences. And this is the approach that we shall discuss and further developed in this book.  

3.2 From denotations to syntax 

All early works on the semantics of programming languages were devoted to building semantics for existing 

languages. This fact has led to a tacit assumption that in designing a language, the syntax should come first 

into the play. Of course, there is a certain logic in this way of thinking, since how can we build a model for 

something that does not yet exist? After all, astronomers were describing the mechanics of celestial bodies 

when the Sun and the planet were already there.   

 

26 M. Gordon is talking here about recursive domain-equations, which, in some case of non-continuous domain 
operators, lead to D. Scott’s reflexive domains.  



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       55 

 

This way of thinking has, however, a particular vulnerability, since computer science cannot be compared 

to astronomy, physics, or biology, where we describe the world around us. Building a programming language 

is an engineering task, such as constructing a bridge or an airplane. Would any engineer ever think of first 

constructing a bridge basing on common sense and only then making all necessary calculations? Such a bridge 

would certainly collapse. 

In our approach, we reverse the traditional order where one first builds a syntax, and only later defines its 

meaning. We will build a language starting from an algebra of detonation from which syntax will be derived 

in such a way that a denotational semantics exists. This construction was sketched in Sec. 2.13. 

An experimental programming language developed in this book is called Lingua. This Italian name has 

been suggested by Andrzej Blikle to commemorate the circumstances under which — working as a scholar of 

Italian government from October to December 1969 — he wrote his habilitation thesis later published in 

Dissertationes Mathematicae [17]. During three months in the Istituto di Elaborazione dell’Informazione in 

Pisa he described a denotational semantics of a very simple programming language, although he didn’t call 

his semantics in this way. The name “denotational semantics” was used for the first time in a joint work by D. 

Scott and Ch. Strachey [75]. Only eighteen years later, in the year 1987, Andrzej Blikle described (in [25]) 

the idea of deriving syntax from detonations.  

3.3 Why we need denotational models of programming languages? 

A denotational model of a programming language serves as a starting point for the realization of three tasks:  

1. building an implementation of the language, i.e., its interpreter or compiler,  

2. creating rules of building correct specified programs in this language, 

3. writing a user manual.  

When designing our language in this book, we shall observe two fundamental (although not quite formal) 

principles: 

 

First Principle of Simplicity 

A programming language should be as simple to understand and easy to use as possible without 

harming its functionality, mathematical clarity, and completeness of its description.  

Second Principle of Simplicity 

The same applies to the manual of the language and to the rules of building correct programs. 

 

These principles shall be fulfilled by: 

1. making the syntax of the language as close as possible to the language of “usual” mathematics, e.g., 

whenever it is common, we allow infix notation and the omission of “unnecessary” parentheses,  

2. making the semantics of the language easy to understand by the user rather than convenient for the 

implementor; for the latter, an equivalent implementation-oriented model may be written. 

3. making the structure of the language (i.e., program constructors) leading to possibly simple rules of 

constructing correct programs (Sec. 8 and Sec. 9),  

Particular attention should be given to point 3. because the simplicity of the rules of building correct programs 

leads to a better understanding of programs by programmers. This fact was realized already in the decade of 

1970. and has led to the elimination of goto instructions. This decision led to a significant simplification of 

program structures, which increased their reliability. On the other hand, it did not limit the functionality of 

programming languages. 
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Following point 3, we will sometimes — as typical in mathematics — "forget" about the difference between 

syntax and denotations. E.g., we will talk about the value of an arithmetic expression x + y, rather than about 

the value generated by its denotation. We will say that the instruction x:=y+1 modifies the value of x, instead 

of saying that the denotation of this instruction modifies a memory state at variable x, etc. Of course, at a 

formal level, we shall precisely distinguish syntax from denotations.  

3.4 Five steps to a denotational model 

Building up Lingua, we refer to an algebraic model described in Sec. 2.11 to Sec. 2.16. It corresponds to the 

diagram of three algebras shown in Fig. 2.1.3-1. We build it in such a way that the equation:  

A2D = A2C ● C2D  

is satisfied, which guarantees the existence of a denotational semantics of our language. 

The construction of a denotational model begins with a description of an algebra of detonation AlgDen. 
Then from the signature of AlgDen we derive an algebra of abstract syntax AlgAbsSyn, and, precisely 

speaking a context-free grammar that describes this algebra. The first of these steps is creative since it 

comprises all the significant decisions about a future language. In turn, the second step can be performed 

algorithmically.  

Since abstract syntax is usually not convenient for programmers, we build an algebra of concrete syntax 

AlgConSyn. In typical situations, we do it by replacing prefix notation by infix notation and introducing 

more intuitive names of constructors. In our approach the corresponding abstract-to-concrete homomorphism 

A2C will be an adequate homomorphism, which guarantees the existence of a unique homomorphism: 

C2D : AlgConSyn ⟼ AlgDen 

(concrete semantics), which is the semantics of concrete syntax. In this way, we create the main components 

of our denotational model.  

 

 

Fig. 2.1.3-1 Basic algebraic model of a programming language 

The step from abstract syntax to concrete syntax is creative — although rather simple.  For instance, instead 

of writing +(a, b) we write (a + b) and instead of writing  

if.(greater.(x, 0), assign.(x, plus.(x, 1)), assign.(x, minus.(x. 1))) 

we write 

if x>0 then x:=x+1 else x:=x-1 fi 

The next step in building a user-friendly syntax consist in introducing so called colloquialisms. For instance 

instead of writing  

(a+(b+(c*d)) 



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       57 

 

we shall write 

a + b + c*d 

assuming that multiplication binds stronger than addition, and that “the remaining” parentheses are added 

from left to right. The introduction of colloquialisms into concrete syntax leads to an algebra of colloquial 

syntax ColSyn (Fig. 2.1.3-2), which most frequently has a different signature than concrete syntax, and 

therefore can’t be a homomorphic image of it. However, we make sur that there exists an implementable 

restoring transformation  

RES : AlgColSyn ⟼ AlgConSyn 

that transforms colloquial syntax back to the concrete one, e.g., by adding the missing parentheses.  

 

 

Fig. 2.1.3-2 An algebraic model of a language with colloquial syntax 

In a programmer’s manual, a language with colloquialisms is described by a grammar of concrete syntax with 

additional clauses and a restoring transformation (Sec. 7.4). For instance, we explain that in writing arithmetic 

expressions, we can skip parentheses while maintaining the priority of multiplication and division over 

addition and subtraction.   

In such a case, an implementor receives a standard denotational model of a language plus a formal definition 

(algorithm) of restoring transformation. The execution of a program consists then of two steps: 

1. a pre-treatment of the source code by a restoring transformation, 

2. an interpretation or compilation of concrete-syntax code. 

Summing up our considerations, the construction of a denotational model of a programming language correct-

program constructors proceeds in five steps: 

1. In the first step, we build an algebra of detonations AlgDen that includes the denotations of the future 

syntax as well as their constructors. In that step, significant decisions are taken about the functionality 

of the language. A language designer must specify the repertoire of constructors of AlgDen  in such 

a way that the corresponding (unique) reachable subalgebra contains all the elements that we want to 

access through syntax. This will be illustrated and explained in Sec. 6. In the earlier Sec. 4 and Sec. 5 

we build technical fundaments for the algebra of denotations — data- and type-oriented algebras, 

objects, classes and states. 

2. The signature of algebra AlgDen uniquely determines the algebra of abstract syntax AlgAbsSyn and 

the corresponding homomorphism (abstract semantics) A2D. Formally this step (Sec. 7.2) leads from 
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the signature of AlgDen to an equational grammar of AlgAbsSyn, and can be performed 

algorithmically.  

3. Since abstract syntax is not user-friendly, we transform it (Sec. 7.3) in a homomorphic way to a 

concrete syntax AlgConSyn, which is closer to programmers’ syntax. We make sure that this 

homomorphism is adequate which guarantees the existence a denotational semantics (a 

homomorphism C2D : AlgConSyn ⟼ Den. 

4. In the fourth step, we introduce colloquialisms (Sec. 7.4) — which make our language even more user-

friendly — and describe the restoring transformation. This step is creative again. The grammar of 

colloquial syntax emerges from the grammar of concrete syntax by adding to it some new grammatical 

clauses. 

5. In the last step we build tools for the construction of correct programs (Sec. 9). In our opinion this step 

should be regarded as an inherent phase in designing a programming language. It should be the 

responsibility of a language designer to choose such programming mechanisms which make the 

corresponding constructors of correct programs sufficiently easy to use. 

In the end let us reemphasize that Lingua is not regarded as a prototype of a stand-alone applicative 

programming language, but only as an example a sufficiently useful language with denotational semantics. 
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4 DATA, TYPES AND VALUES 

4.1 Lingua as a strongly-typed language 

In a manual of SQL ([46] p. 786), we can read the following sentence27: 

“If we do not provide (…) correct values to functions as their arguments, we should not expect consistent 

results.” 

Contrary to this philosophy, Lingua will be constructed so that whenever a program provides unexpected 

values to a function, this function will generate an error message and/or initiate a recovery action. To 

achieve this goal, we equip Lingua with a typing discipline, by which we mean the following: 

1. Programs operate on values that are pairs consisting of a core and its type. A core may be a data or an 

objecton. Values consisting of a data and its type are called typed data, whereas values consisting of 

an objecton and its type are called objects. Values are assigned in memory states either to variables or 

to the attributes of objects (in both cases via references). They also become arguments of constructors 

and may be passed as value parameters to procedure calls.  

2. The types of data are called data types. Although they define sets of data, thus describing data 

properties, they must not be confused with such sets. Instead, they are standalone mathematical beings 

of a finitistic character. This solution allows us to provide a mechanisms of building user-defined types 

of possibly deep structures, such as, e.g., a type of records that carry lists of arrays of texts. Such types 

may be also easily checked to be equal or not, or if one is covered by another one (Sec. 5.4.2). 

3. Types that describe objectons, and so are components of objects, are called object types. Technically 

they are names of classes which, in turn, describe collections of tools applicable to objects.  

4. Data types and object types constitute together a domain of types. 

5. Each variable declared in a program points to a reference, which points (or not) to a value. A reference 

is a tuple which includes a type as one of its elements. Whenever we assign a value to a reference, the 

type of this reference must cover the type of that value. Covering relations between types are 

components of memory states, since users may enrich them when defining new types.  

6. Types indicate categories of values, and are used in the descriptions of the following mechanisms: 

a. the declarations of variables, 

b. the declarations of user-defined types, 

c. the evaluation of expressions, 

d. the execution of assignment instructions, 

e. passing arguments to operations on values, 

f. passing actual parameters to all three categories of procedures — imperative, functional and 

object constructors, 

g. returning reference parameters at the end of imperative-procedure calls, 

h. returning values of functional procedures, 

i. defining the types of formal parameters of all categories of procedures. 

7. At the syntactic level of Lingua we have type expressions that evaluate to types, and type declarations 

that are used to name types, and to save them in classes for subsequent use. 

 

27 Andrzej Blikle’s translations from a Polish edition of [46].  
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4.2 Data 

The first step in designing a programming language in our framework consists in defining an algebra of data,  

AlgDat, whose carriers include different sorts of data which our programs will process, and constructors that 

will be used to build data.  

We recall and reemphasise in this place that in our book we are not building a real programming language, 

but only indicate how such a language might be designed. In particular, our operations on data are not supposed 

to constitute a complete tool kit. They only offer some typical examples of such operations and their 

definitions. 

To begin with, we assume to be given some prime data offered by an implementation platform. We shall 

not define them explicitly assuming that they are just parameters of our model. Let’s assume, therefore, that 

we are given the following (somehow defined) domains of prime data offered by an implementation platform: 

ide  : Identifier = … 
int  : Integer = … 
rea : Real  = … 
boo : Boolean  = {tt, ff} 
tex : Text  = … 

and that each of these domains is restricted by a limitation of the size of its elements, e.g. 

int : Integer = [− 231, 231 − 1 ] 

We assume further to be given a set of corresponding prime-data constructors, again offered by an 

implementation platform, such as e.g. 

pr-divide-int : Integer x Integer  → Integer              prime division of integers28 

pr-divide-rea  : Real x Real   → Real                 prime division of reals 

In the general case we assume that these functions are partial which means that their execution may either 

yield no value (e.g., looping indefinitely), or return an “unwanted” value (e.g. in the case of arithmetical 

modulo operations).  

The elements of the introduced domains, except identifiers, will be called simple data. Having established 

them we define some domains of structured data. In this paper we shall consider the following such domains: 

dat : Data  = Boolean | Integer | Real | Text | List | Array | Record  
lis  : List   = Datac* 
arr : Array  = Integer ⟹ Data 
rec : Record = Identifier ⟹ Data 

A list is a finite, possibly empty, tuple of arbitrary data. Arrays and records are mappings, i.e., finite functions. 

Arrays are one-dimensional, but since their elements can be arrays themselves, our model includes arrays of 

arbitrary dimensions. Identifiers that are in the domain of a record will be called the record attributes.  

All domains which are defined above, except Data and Identifier, will be referred to as data sorts, e.g., 

integer sort, word sort, array sort, etc. At this stage, lists and arrays are not-homogeneous, i.e., may include 

elements of different sorts. Additionally, the domains of indices of arrays may be arbitrary finite sets of 

integers, rather than (as usual) sets of consecutive integers. Finally, all our structural data are finite, but may 

be "arbitrarily large".  

Such “oversized” domains have been defined in this way to make their definitions expressible by simple 

domain equations. Later the constructors of our algebras will assure that all data generated by programs will 

have “appropriate” structures and sizes. The technique of defining “oversized” domains whose implementable 

 

28 We assume that the result of this operation within the range of the prime integers is the integer part of the rational 
result of the “mathematical” division of integers. 
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parts are later appropriately “truncated” is typical for denotational models and will be frequently used in the 

sequel of the book29.  

As the carriers of our algebra of data we take Identifier plus all domains of data supplemented by abstract 

error. E.g.,  

int : IntegerE = Integer | Error 

Having defined data carriers, we may proceed to the definitions of data constructors. We start with their 

signatures and give some of their definitions a little later. Since we regard the algebra of data as a parameter 

of our model, these definitions should be seen as examples only. The names of constructors are prefixed with 

da- which stands for “data”.  

Comparison constructors 

da-equal    : DataE x DataE      ⟼ BooleanE        data comparison 

da-less     : DataE x DataE      ⟼ BooleanE         data comparison 

Formally these two constructors are defied for any sorts of data. It does not mean, however, that we intend to 

compare lists or arrays or lists with arrays, or perhaps even integers with reals. In all such cases we may 

assume that our constructors return error messages. 

At this stage we do not introduce logical connectives and, or and not in the domain BooleanE. They will 

come into play only at the level of expression denotations in Sec. 6.5.2, and this decision will be explained 

there. 

Integer number constructors 

da-add-in    : IntegerE x IntegerE     ⟼ IntegerE 
da-subtract-in  : IntegerE x IntegerE     ⟼ IntegerE 

da-multiply-in  : IntegerE x IntegerE     ⟼ IntegerE 
da-divide-in   : IntegerE x IntegerE     ⟼ IntegerE 

Real number constructors 

da-add-re    : RealE x RealE       ⟼ RealE 
da-subtract-re  : RealE x RealE       ⟼ RealE 

da-multiply-re  : RealE x RealE       ⟼ RealE 
da-divide-re   : RealE x RealE       ⟼ RealE 

Text constructors 

da-glue-te    : TextE x TextE       ⟼ TextE 

List constructors 

da-empty-li   :            ⟼ ListE 

da-cons-li    : DataE x ListE       ⟼ ListE 
da-head-li    : ListE          ⟼ DataE  
da-tail-li     : ListE          ⟼ ListE 

Array constructors 

da-empty-ar   :             ⟼ ArrayE            create an empty array 

da-put-to-ar   : ArrayE x DataE      ⟼ ArrayE  add an element with a “next” index 

da-change-in-ar  : ArrayE x IntegerE x DataE  ⟼ ArrayE         replace an element of an array  

 

29 At the level of the algebra of denotations “implementable” would mean “algebraically reachable” (cf. Sec. 2.13). As 
we remember, only reachable denotations are representable in syntax. However, at the level of data — and later of 
types and values — the corresponding algebras need not be reachable, since they are not going to have syntactic 
counterparts. Indeed, if we write e.g. 17,3 in a program, it is not a syntactic representation of a corresponding number, 
but an expression whose fixed value is that number. This will be formalized in Sec. 6.5.2 
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da-get-from-ar  : ArrayE x IntegerE     ⟼ DataE  

Record constructors 

da-create-re    : Identifier x DataE      ⟼ RecordE 
da-put-to-re    : DataE x RecordE x Identifier  ⟼ RecordE 
da-get-from-re  : RecordE x Identifier     ⟼ DataE    

da-change-in-re  : RecordE x Identifier x DataE ⟼ RecordE        replace an element of a record 

Notice that in our algebra, we do not introduce constructors of identifiers. We return to them at the level of 

value-expression denotations in Sec. 6.5.2. Below we give two example definitions of our constructors. 

da-empty-li : ⟼ ListE 
da-empty-li.() = () 

In this definition the first () is the empty (meta) list of arguments of our constructor, whereas the second one 

is an empty tuple of data, i.e., an empty list. The second constructors adds an element at the beginning of the 

list: 

da-cons-li : DataE x ListE ⟼ ListE 
da-cons-li.(dat, lis) = (dat) © lis 

In order to define simple-data constructors, we have assumed a little earlier to be given some primary 

constructors which we may think of as provided by an implementation platform.  

It is a well-known fact that for some arguments primary constructors return either a wrong answer or no 

answer at all. E.g., we can’t divide a number by zero, or can’t add two numbers if their sum would be too large 

for the current implementation. In all such cases our data constructors should not be performed in a “standard 

way”, but instead an error message should be generated. To incorporate this mechanism, into our model, with 

every data constructor we associate an auxiliary function called a trust test. E.g. with integer division we 

associate a trust test: 

trust-da-divide-in : IntegerE x IntegerE ⟼ Error | {‘OK’} 

such that whenever the primary constructor pr-divide-in does not return a correct arithmetical result, the trust 

test yields appropriate error message, and otherwise generates ‘OK’. For instance we may set: 

trust-da-divide-in.(int-1, int-2) = 
 int-i : Error           ➔ int-i for i = 1, 2 
 int-2 = 0           ➔ ‘division by zero not allowed’ 
 ma-divide-in.(int-1, int-2) > max-int  ➔ ‘overflow’ 
 ma-divide-in.(int-1, int-2) < min-int  ➔ ‘underflow’ 
 true             ➔ ‘OK’ 

where ma-divide-in is a mathematical division, and max-int denotes the maximal integer acceptable in a 

current implementation30. Of course, the predicates 

ma-divide-in.(int-1, int-2) > max-int 
ma-divide-in.(int-1, int-2) < min-int 

must be “somehow” implemented.  

We assume that all our trust tests will be transparent for errors (Sec. 2.9). In this book we shall not define 

trust tests explicitly assuming that they constitute yet another  category of parameters of our model.   

Given a trust test for the division of integers, the definition of the corresponding data constructor will be 

the following: 

da-divide-in.(int-1, int-2) = 

 

30 Note that integer division may result in over- or underflow, when the numbers of negative and positive integer values 
are not equal (which is the case, for example, in the most popular two’s complement representation). 
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 trust-divide-in.(int-1, int-2) : Error ➔ trust-divide-in.(int-1, int-2) 
 true            ➔ pr-divide-in.(int-1, int-2) 

Trust tests should be defined not only for simple-data constructors, but also for structure-data constructors, 

where they may check, e.g., for overflow.  For instance, a trust test associated with a constructor that adds an 

element to a list may be defined as follows: 

trust-da-cons : DataE x ListE ⟼ Error | {‘OK’} 
trust-da-cons.(dat, lis) = 
 dat  : Error        ➔ dat 
 lis  : Error        ➔ lis 
 size.(push.(dat, lis)) > max   ➔ ‘overflow’ 
 true           ➔ ‘OK’ 

where push is a “mathematical” functions defined in Sec. 2.2, size is a function that somehow computes the 

memory size necessary to “fit” the list, and max is a parameter of our model31. The definition of the 

corresponding operation on data will be the following: 

da-cons-li : DataE x ListE ⟼ Error | {‘OK’} 

da-cons-li.(dat, lis) = 
 truth-da-cons.(dat, lis) : Error  ➔ truth-da-cons.(dat, lis) 
 true           ➔ push.(dat, lis) 

The definitions of the remaining data constructors are analogous and we assume them to be parameters of our 

model. 

It is to be emphasized at the end that we use trust tests only at the level of data algebras, and their technical 

role is limited to a “truncation” of prime operations to their “ranges of credibility”. We “sort them out” from 

the definitions of data constructors just to emphasize that their identifications constitute an essential step in 

designing a programming language. In the book's sequel, practically all defined constructors will perform 

some adequacy checks of their arguments, but we shall not define these checks as separate trust tests.  

4.3 Data types 

Having defined our algebra of data we may proceed to an algebra of data types that we shall denote by 

AlgDatTyp. Data types describe “internal structures” of data, and will be used as components of values. 

Formally data types are defined as tuples or mappings or their combinations, e.g. a type of arrays that carry 

lists of records of arrays… The categories of our data types reflect the structures of our data domains: 

typ : DatTyp =  
{(‘integer’), (‘real’), (‘boolean’), (‘text’)}  |                     simple types 

{‘L’} x DatTyp          |                              list types 
{‘A’} x DatTyp          |                      array types 
{‘R’} x (Identifier ⟹ DatTyp)                                record types 

Types of simple data are one-element tuples of words. Symbols 'L', 'A' and 'R' are called type initials and 

indicate the sorts of structural types. E.g. ('A', ('integer’)) is a type of arrays of integers, and  ('L', ('A', ('real'))) 
is a type of lists, whose elements are arrays of reals.  

In the case of a list-type ('L ', typ) we say that typ is the inner type of the list-type and similarly for array-

types. The elements of the domain 

 

31 In this definition, and in all definitions in the sequel, we assume that whenever an error appears in a computation, this 
computation is aborted and the error is signalized, i.e., is returned as a terminal result. In our case if both dat and lis 
are errors, then only dat-error is signalized. An alternative to this solution could be that we search for, and signalize, 
all errors. Since such a solution would significantly lengthen our definitions, and made them less readable, we gave it 
up. After all Lingua is only an example. 



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       64 

 

tyr : TypRec = Identifier ⟹ DatTyp 

are called type records such as, e.g.: 

type-record = 
[‘ch-name’   / (‘text’), 
‘fa-name’    / (‘text’), 
‘award-years’  / (‘A’, (‘integer’)), 
‘salary’     / (‘integer’), 
‘bonus’     /  (‘integer’) ] 

All the attributes of our type-record except the third one have simple types, whereas the latter has an array 

type. For the purpose of a future discussion the type in our example will be referred to as ‘employee’. Other 

examples of data types may be: 

('L', ('R', [name/(‘text’), age/('integer')] ) )               a type of lists of records 
('A', ('L', ('R', [name/(‘text’), age/('integer')] ) ) )          a type of arrays of lists of records 

The definitions of type domains anticipate the principle that all elements of a list or of an array must have a 

common type. 

Notice that an array type does not specify the number of array elements. The introduction of arrays with a 

fixed number of elements will be possible with the use of yokes (see Sec. 4.6).  

To associate data with data types, we associate with each type a set of data called the clan of this type. 

Formally, we define a function CLAN-ty that with each type assigns its clan: 

CLAN-ty : DatTyp ⟼ Sub.Data 

This function is defined by structural induction 

CLAN-ty.(‘boolean’)          = Boolean 
CLAN-ty.(‘integer’)          = Integer 
CLAN-ty.(‘real’)           = Real 
CLAN-ty.(‘text’)           = Text  
CLAN-ty.(‘L’, typ)          = (CLAN-ty.typ)c* 
CLAN-ty.(‘A’, typ)          = Integer ⟹ CLAN-ty.typ 
CLAN-ty.(‘R’, [ide-1/typ-1,…, ide-n/typ-n])  = 

{ [ide-1/dat-1,…, ide-n/dat-n] | dat-i : CLAN-ty.typ-i  for  i = 1;n } 

Two facts are important about clans: 

1. the union of types does not does not exhaust the domain Data. 

2. clans of different types are disjoint,  

First property means that there exist data which have no types. An example of such a data may be a non-

homogeneous list of numbers such as, e.g., (123, ‘abc’, tt). As we will see in the sequel, non-homogeneous 

data will not “happen” in our programs. In this way, by introducing types, we restrict the set of reachable 

data32. 

The second property implies that, if a data has a type, then this type us unique. For technical reasons we 

introduce an auxiliary function of a sort of a type: 

sort-t : DatTypE ⟼ {(‘boolean’), (‘integer’), (‘real’), (‘text’), ‘L’, ‘A’, ‘R’} | Error 

sort-t.typ = 
 typ : Error          ➔ typ 
 typ = (‘boolean’)       ➔ (‘boolean’) 

 

32 In this place the word “reachable” does not mean “reachable algebraically” in the sense described in Sec. 2.13. It only 
means that such a data may appear as a component of a value (see Sec. 4.5) generated by an expression evaluated 
in a program.  
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 typ = (‘integer’)        ➔ (‘integer’) 
 typ = (‘real’)         ➔ (‘real’) 
 typ = (‘text’)         ➔ (‘text’) 
 typ : {‘L’} x DatTyp       ➔ ‘L’ 

typ : {‘A’} x DatTyp       ➔ ‘A’ 
typ : {‘R’} x (Identifier ⟹ DatTyp)  ➔ ‘R’ 

Our algebra of data types includes only two carriers: 

ide : Identifier — defined in Sec. 4.2 

typ : DatTypE = DatTyp | Error 

The constructors of this algebra will be defined in such a way that with every primary constructor on data we 

associate a type constructor. To show this association explicitly, with every (meta) name da-co of a data 

constructor, we assign a (meta) name ty-co of a type constructor.  

Comparison constructors 

ty-equal   : DatTypE x DatTypE      ⟼ DatTypE 
ty-less    : DatTypE x DatTypE      ⟼ DatTypE 

Arithmetic constructors for integers 

ty-add-in   : DatTypE x DatTypE      ⟼ DatTypE 
ty-subtract-in  : DatTypE x DatTypE      ⟼ DatTypE 
ty-multiply-in  : DatTypE x DatTypE      ⟼ DatTypE 
ty-divide-in  : DatTypE x DatTypE      ⟼ DatTypE  

Arithmetic constructors for reals 

ty-add-re   : DatTypE x DatTypE      ⟼ DatTypE 
ty-subtract-re  : DatTypE x DatTypE      ⟼ DatTypE 
ty-multiply-re  : DatTypE x DatTypE      ⟼ DatTypE 
ty-divide-re  : DatTypE x DatTypE      ⟼ DatTypE  

Text constructors 

ty-glue-li   : DatTypE x DatTypE      ⟼ DatTypE 

List constructors 

ty-empty-li   : DatTypE          ⟼ DatTypE 
ty-cons-li   : DatTypE x DatTypE      ⟼ DatTypE 
ty-head-li   : DatTypE          ⟼ DatTypE  

ty-tail-li    : DatTypE          ⟼ DatTypE  

Array constructors 

ty-create-ar  : DatTypE          ⟼ DatTypE 
ty-put-to-ar  : DatTypE x DatTypE      ⟼ DatTypE 
ty-change-in-ar : DatTypE x DatTypE x DatTypE ⟼ DatTypE  

ty-get-from-ar : DatTypE  x DatTypE     ⟼ DatTypE  

Record constructors 

ty-create-re   : Identifier x DatTypE      ⟼ DatTypE 
ty-put-to-re   : DatTypE x DatTypE x Identifier  ⟼ DatTypE 
ty-get-from-re : DatTypE x Identifier      ⟼ DatTypE  

ty-change-in-re : DatTypE x Identifier x DatTypE ⟼ DatTypE  

Below a few examples of the definitions of these constructors: 

ty-equal.(typ-1, typ-2) = 
 typ-i : Error     ➔ typ-i      for i = 1,2 
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typ-1 ≠ typ-2     ➔ ‘compared types must coincide’ 
 not comparable.typ-1 ➔ ‘not comparable’ 
 true        ➔ (‘boolean’) 

Here we have used a metapredicate comparable to express the fact that only some data will be comparable. 

E.g., numbers and words will be comparable, but lists, arrays, and records will not.  

 
ty-divide-in.(typ-1, typ-2) = 
 typ-i : Error   ➔ typ-i         for i = 1,2 
 typ-i ≠ (‘integer’) ➔ ‘integer expected’    for i = 1,2 
 true      ➔ (‘integer’) 
 
ty-empty-li.typ = 
 typ : Error  ➔ typ 
 true    ➔ (‘L’, typ) 
 
ty-cons-li.(typ-e, typ-l) =                       cons typ-e on list typ-l 
 typ-i : Error  ➔ typ-i          for i = e,l 
 sort-t.typ-l ≠ ‘L’ ➔ ‘list expected’ 
 let 
  (‘L’, typ) = typ-l 
 typ-e ≠ typ  ➔ ‘conflict of types’ 
 true    ➔ typ-l 
 
ty-empty-ar.typ = 
 typ : Error  ➔ typ 
 true    ➔ (‘A’, typ) 
 
ty-put-to-ar.(typ-e, typ-a) =                     put typ-e to array typ-a 

 typ-i : Error   ➔ typ-i         for i = a,e 
 sort-t.typ-a ≠ ‘A’  ➔ ‘array expected’ 
 let 
  (‘A’, typ) = typ-a 
 typ ≠ typ-e  ➔ ‘conflict of types’ 
 true    ➔ typ-a 
 
ty-create-rec.(ide, typ) = 
 typ : Error  ➔ typ 
 true    ➔ (‘R’, [ide/typ]) 
 
ty-put-to-rec.(typ-e, typ-r, ide) =         put typ-e to record typ-r on attribute ide 
 typ-i : Error   ➔ typ-i 
 sort-t.typ-r ≠ ‘R’  ➔ ‘record expected’ 
 typ-r.ide = !   ➔ ‘attribute already exist’ 
 true      ➔ (‘R’, typ-r[ide/typ-e]) 
 
ty-change-in-re.(typ-r, ide, typ-e) =           check if new type coincides with the former 

 typ-i : Error  ➔ typ-i      for i = r, e 
 sort-t.typ-r ≠ ‘R’ ➔ ‘record expected’ 
 let 
  (‘R’, typ-rb) = typ-r                     -rt for „record type” 
 typ-rb.ide = ?  ➔ ‘no such attribute’ 
 let 
  typ-at = typ-rb.ide                     -at for „attribute type” 
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 typ-e ≠ typ-at  ➔ ‘conflict of types’ 
 true     ➔ typ-r 
 

The last constructor  will be used in Sec. 4.4 in the definition of a constructor of typed data that replaces a data 

assigned to an attribute of a record by another data. Here we anticipate the fact that if we replace a data 

assigned to a record attribute, the new data must have the same type as the former one.  

Type constructors will play a double role in our model: 

1. they will be used in evaluating value expressions to build the type of the new value, 

2. they will be used in type expressions and type declarations to build user-defined data types. 

4.4 Typed data 

Typed data are pairs consisting of a data and its type, and their algebra will constitute a fundament for a future 

carrier of value-expression denotations in the algebra of the denotations of Lingua. The algebra of typed data 

includes three carriers: 

ide : Identifier  = … 
typ : TypeE  = … 
tyd : TypDat   = {(dat, typ) | dat : CLAN-ty.typ}                        (4.4-1) 

In this place we should explain why we decided to operate on typed data, rather than on data alone, despite 

the fact that every reachable data has a unique type (Sec. 4.3)? There are at least four reasons of our decision: 

1. We want to show explicitly how the modification of data goes in parallel with the modification of their 

types. In this way, we also suggest a specific technique for implementing Lingua.  

2. Whenever a typed data is to be an argument of an operation, is to be assigned to a variable or to a 

formal parameter of a procedure, we have to check the coincidence of the type of the data with an 

expected type of an argument, a variable or a parameter respectively. In all such cases having an 

explicit type of a data is just handy.  

3. As we will see in Sec. 4.5, typed data will constitute just one category of values, whereas the second 

category will include objects consisting of an objecton and its type. In this case one objecton may be 

associated to many different types. 

4. In Sec. 5.4.2 we will introduce a covering relation between types such that wherever a value of typ1 

is expected, we can use a value of typ2, if only typ1 covers type2. 

A typed data that carries a simple data is called simple typed data and analogously are understood structural 

typed data. The constructors of typed data will “call” the corresponding constructors of data and types. To 

describe this mechanism we expand the earlier introduced function sort-t (Sec. 0) onto typed data and 

identifiers: 

sort-td.(dat, typ)  = sort-t.typ 
sort-td.ide    = ide 

Note in this place that although the algebra of data has many carriers, in the algebra of typed data we “glue” 

them all into one carrier. We can do so without losing a typing discipline, since data are coupled with types, 

and therefore the constructors of our algebra may signalize errors whenever receiving arguments of 

inappropriate types. As we will see in Sec. 6.5.3 this solution also leads to one carrier of value expressions 

instead of many carriers such as, e.g., boolean expressions, integer expressions, array expressions etc. This 

solution simplifies our model. 

Now we can proceed to the constructors of the algebra of typed data. For each data constructor da-co we 

define a typed data constructor td-co, that “calls” the corresponding da-co and ty-co. Note that all our 

constructors are total functions which is possible due to the fact that TypDatE includes abstract errors. 

Comparison constructors 
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td-equal   : TypDatE x TypDatE      ⟼ TypDatE 
td-less    : TypDatE x TypDatE      ⟼ TypDatE 

Arithmetic constructors for integers 

td-add-in   : TypDatE x TypDatE      ⟼ TypDatE 
td-subtract-in  : TypDatE x TypDatE      ⟼ TypDatE  

td-multiply-in  : TypDatE x TypDatE      ⟼ TypDatE  
td-divide-in  : TypDatE x TypDatE      ⟼ TypDatE  

Arithmetic constructors for reals 

td-add-re   : TypDatE x TypDatE      ⟼ TypDatE 

td-subtract-re : TypDatE x TypDatE      ⟼ TypDatE  

td-multiply-re  : TypDatE x TypDatE      ⟼ TypDatE  
td-divide-re  : TypDatE x TypDatE      ⟼ TypDatE  

Text constructors 

td-glue-tx   : TypDatE x TypDatE      ⟼ TypDatE 

List constructors 

td-empty-li   : DatTypE          ⟼ TypDatE 
td-cons-li   : TypDatE x TypDatE      ⟼ TypDatE 
td-head-li   : TypDatE          ⟼ TypDatE  
td-tail-li    : TypDatE          ⟼ TypDatE  

Array constructors 

td-empty-ar  : DatTypE          ⟼ TypDatE 
td-put-to-ar  : TypDatE x TypDatE      ⟼ TypDatE 
td-change-in-ar : TypDatE x TypDatE x TypDatE ⟼ TypDatE  
td-get-from-ar : TypDatE x TypDatE      ⟼ TypDatE  

Record constructors 

td-create-re   : Identifier x TypDatE      ⟼ TypDatE 

td-put-to-re   : TypDatE x TypDatE x Identifier  ⟼ TypDatE 
td-get-from-re : TypDatE x Identifier      ⟼ TypDatE  
td-change-in-re : TypDatE x Identifier x TypDatE ⟼ TypDatE  

Let us show a few examples of the definitions of these constructors. All of them are transparent for errors 

(Sec. 2.9). In all cases constructors are defined according to a common scheme: 

1. check if the argument typed data are not errors, and if they are not then, 

2. compute the resulting type by a type constructor, and if no error is signalized then, 

3. compute the resulting data by a primary data constructor, and if no error is signalized then, 

4. combine the computed type and data into a typed data.  

If in 1, 2 or 3 an error is signalized, then this error becomes the final result. Let us illustrate this scheme by an 

example of the division of integers: 

td-divide-in : TypDatE x TypDatE ⟼ TypDatE  

td-divide-in.(tyd-1, tyd-2) = 
 tyd-i : Error ➔ tyd-i          for i = 1, 2 
 let 
  (dat-i, typ-i)  = tyd-i         for i = 1, 2 
  typ     = ty-divide-in.(typ-1, typ-2) 
 typ : Error  ➔ typ 
 let 
  dat = da-divide-in.(dat-1, dat-2) 
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 dat : Error  ➔ dat 
 true    ➔ (dat, typ) 

In this definition, we refer to (call) two previously introduced constructors — a type constructors ty-divide-
in, and a data constructor da-divide-in. First of them checks if the arguments of td-divide-in are integers, and 

the other is responsible for all remaining checks. 

A few other examples of the constructors of typed data are shown below. Note that some of them, like the 

coming one, get types as arguments. This is why the algebra of typed data includes the carrier ot types. 

td-empty-li : DatTypE ⟼ TypDatE 
td-empty-li.typ = 

typ : Error  ➔ typ 
 let 

list-typ = ty-empty-li.typ 
true    ➔ ((), typ-l) 

We recall that () denotes an empty tuple, and ty-create-li.typ = (‘L’, typ). As we see, a typed list includes no 

data, but has a type. When we add a new typed data to such a list, its type must be typ. This rule is expressed 

in the following definition: 

td-cons-li : TypDatE x TypDatE ⟼ TypDatE 
td-cons-li.(tyd-e, tyd-l) =                           -e – “element”, -l – “list” 
 tyd-i : Error   ➔ tyd-i    for i = e, l 
 let 
  (dat-i, typ-i) = tyd-i     for i = e, l 
  new-typ-l  = ty-cons-li.(typ-e, typ-l) 
 new-typ-l : Error ➔ new-typ-l 

new-lis    = da-cons-li.(dat-e, dat-l)  

 true      ➔ (new-lis, typ-l) 

When this operation is given a list that is homogeneous (all its elements are of the same type) and no error is 

encountered, it builds a list which is homogeneous as well. Since we ensure this property for all the 

constructors of list typed data, it follows that all reachable list typed data are homogeneous.  

Note that if new-typ-l /: Error, then new-typ-l = typ-l, and therefore the type of the new list is typ-l. This 

definition in an unfolded (direct) form looks as follows: 

td-cons-li : TypDatE x TypDatE ⟼ TypDatE 
td-cons-li.(tyd-e, tyd-l) =                                -e – “element”, -l – “list” 
 tyd-i : Error   ➔ tyd-i    for i = e, l 
 sort.typ-li ≠ ‘L’  ➔ ‘list-type expected’ 
 let 
  (‘L’ typ-le) = typ-l                      -le – „list element”  
 typ-le ≠ typ-e   ➔ ‘types incompatible’ 
 true      ➔ typ-l 

Analogously we restrict the class of reachable array-typed data. 

td-empty-ar : DatTypE ⟼ TypDatE 
td-empty-ar.typ =  
 typ : Error ➔ typ 
 let 
  typ-a  = ty-empty-ar.typ 

arr   = da-empty-ar.dat 
 true    ➔ (arr, typ-a) 

If at the level of data we assume that  

da-empty-ar.dat = [ ], 
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The operation of putting a new element at the end of an array should guarantee that the domain of every array 

is of the form {1,…,n}. 

td-put-to-ar : TypDatE x TypDatE ⟼ TypDatE 
td-put-to-ar.(tyd-a, tyd-e)  =                         put tyd-e to array tyd-a 
 tyd-i : Error  ➔ tyd-i   for i = e, a 
 let 
  (dat-i, typ-i) = tyd-i                 for i = e, a 
  typ    = ty-put-to-ar.(typ-a, typ-e) 
 typ : Error   ➔ typ 

let 
  new-arr = da-put-to-ar.(dat-a, dat-e) 
 true     ➔ (new-arr, typ) 

where we assume that at the level of data we have 

new-ind.dat-a  = max.(dom.dat-a) + 1 
dom.[ ] = {0} 
new-arr  = dat-a[(new-ind.dat-a)/dat-e] 

At the end one more definition which “inherits” a decision from the level of types: 

td-change-in-re : TypDatE x Identifier x TypDatE ⟼ TypDatE 

td-change-in-re.(tyd-r, ide, tyd-e) =       change in record tyd-r at attribute ide for tyd-e 

 tyd-i : Error  ➔ tyd-i      for i = r, e 
let 

  (dat-i, typ-i) = tyd-i      for i = r, e 
typ    = ty-change-in-re.(typ-r, ide, typ-e) 

 typ : Error   ➔ typ 
let 

  new-rec = da-change-in-re.(dat-r, ide, dat-e) 
 true     ➔ (new-rec, typ-r)  

Here we assume that the corresponding data-constructor is the following: 

da-change-in-re.(dat-r, ide, dat-e) = dat-r[ide/dat-e] 

The inherited decision is implicit in ty-change-in-re and concerns the fact that if we assign new data to an 

attribute of a record, then the new type must be identical with the previous one. Consequently the type of the 

record does not change.  

4.5 Values, references, objects, deposits and types 

Two major concepts that we discuss in this section are values and references. As was already announced in 

Sec. 4.4, there are two categories of values: typed data and objects. Values may be: 

• returned by value expressions (Sec. 6.5.2), 

• assigned to references in deposits (in states, cf. Sec. 5.3), 

• passed to procedures as the values of actual value-parameters (Sec.6.6.3.4). 

References are pairs consisting of a token, representing some memory location, and a profile. The profile 

describes the usability and the visibility of the reference (Sec. 5.4). The former determines properties of values 

which can be stored under this reference, the latter — the rules of accessing them. 

The domains of values and references, as well as some related domains, are defined by the following 

equations: 

val : Value   = TypDat | Object                      values 

obj : Object   = Objecton x ObjTyp                      objects 
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obn : Objecton  = Identifier ⟹ Reference                  objectons 

typ : ObjTyp  = Identifier                        object types 

ref  : Reference = Token x Profile                    references 

tok : Token   = … (e.g. memory locations)                   tokens 

prf  : Profile   = Type x Yoke x OriTag                  profiles 

typ : Type   = DatTyp | ObjTyp                      types 

yok  : Yoke    = ValueE ⟼ BooValE                     yokes 

val : BooValE  = {(tt, (‘boolean’)), (ff, (‘boolean’))} | Error           boolean values 

ota : OriTag  = Identifier  | {$}                     origin tags 

dep : Deposit  = Reference ⟹ Value                         deposits 

An object is a pair (obn, typ) that consists of an objecton and an object type. The latter is an identifier which 

is supposed to be a name of a class (Sec. 5.2). Objects may be said, therefore, to be typed objectons. 

An objecton may be regarded as a memory structure whose regions, i.e., references, are bound to identifiers 

that we shall call attributes.  

A reference ref =(tok, prf) is a pair consisting of: 

• a token tok, that represents a memory location, 

• a profile prf = (typ, yok, ota), that determines the way in which ref may be used: 

o type typ and yok determine the assignability of ref by indicating the properties of values that 

may be assigned to this reference in deposits, 

o origin tag ota determines the visibility of ref — its privacy or publicness (Sec. 5.4.3); we assume 

that $ does not belong to Identifier, and we call it a public-visibility tag. 

Yokes are a kind of predicates that describe these properties of values which can’t be described by types. Yokes 

will be defined in Sec.4.6. Deposits describe memory contents, since they assign values to references. We will 

make sure that references in the domain of each deposit that can be built carry distinct tokens.  

In the sequel (Sec. 5.3) each memory state will carry an objecton and a deposit. If a reference assigned to 

an identifier in an objecton does not belong to the domain of deposit, then the identifier is said to be declared 

but not initialized, and its reference is said to be a dangling reference. 

We introduce a special notation and terminology to be used in talking about objects. Consider an objecton 

obn, a deposit dep, and an identifier ide. We write then: 

ide → ref  and we say that ide points to ref, if obn.ide = ref, 

ref → val and we say that ref points to val, if dep.ref = val, 

Note that we are not talking here about a reference pointing to a location (which is a typical use of references 

or pointers in programming) but about an identifier pointing to a reference which in turn denotes the memory 

location at which the identifier's value is being stored. Three situations are possible: 

ide → ref → val a standard situation where ide has been declared and initialized; in this case we 

say that val is the value of ide, or that val is the value of ide, 

ide → ref  ide has been declared but not initialized; i.e., ref is a dangling reference, 

    ref → val  no identifier points to ref; in this case we say that ref is an orphan reference; 

such references may appear for instance when we create a local initial store of a 

procedure call (Sec. 6.6.3.4), and when we return from a local terminal store of 

a procedure call to a global terminal store (Sec. 6.6.3.5). 

References that belong to the range of an objecton, are said to be carried by this objecton, and by objects that 

include this objecton.  

The profile, the type, and the origin tag of a reference are also said to be respectively the profile, the type, 

and the origin tag of an attribute that points to this reference. 
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We extend to values the function that returns the sort of a typed data: 

sort-va.val = 
 val : TypDat  ➔ sort-td.val 
 val : Object ➔ ‘object’ 

In a certain sense objectons may be seen as “multireferences” because each of their attributes points to a 

reference. Note also that these references may point to other objects that carry further references, etc. 

Consequently, objects may represent nested structures. We see such a situation in Fig. 2.1.3-1, where no1, 
ob1,… are attributes, nr1, or1,… are references, A is a metaname of an objecton, B and C are metanames of 

objects, ClassB and ClassC are names of classes (identifiers), i.e., are the types of corresponding objects.  

To the category of types we add a constructor of object types, which from a set-theoretical perspective is 

an identity function, but from an algebraic perspective it is not, because it “makes identifiers to be object 

types”. 

ty-create-ot : Identifier ⟼ ObjTyp 
ty-create-ot.ide = ide 

Such an algebraic constructor  is called an insertion.  

It is to be noted that structured types, i.e. array-, list- and record types always belong to the category of data 

types. We do not introduce constructors to build structured types involving object types, such as, e.g., types 

of lists or arrays of objects. This decision has been taken to simplify our model. We add more comments in 

this spirit at the end of this section.  

Nevertheless, we can build objects that may be colloquially called “lists of objects”, but their “list nature” 

is just a way of seeing them.  

 

 

Fig. 2.1.3-1 A structure view of an objecton 

 

Fig. 2.1.3-2 A graph view of an objecton 

Consider an objecton in Fig. 2.1.3-1. Its visualization will be referred to as structure view of this objecton. An 

alternative to it is a graph view — in this example a list view — shown in Fig. 2.1.3-2., but it is not a list of 

objects. In our model we only have values that are lists, but we do not have lists of values. 

If an object B is assigned to an attribute of an object A, as in our example, then we say that B is an inner 

object of depth 1 of A. The inner objects of B will be also regarded as inner objects of A, but of a deeper 

depths and so on. The attributes of A will be called surface attributes of A, whereas all attributes of B and C 
will be called deep attributes of A.  

In the sequel we shall carefully distinguish between an object attribute, that is analogous to integer 

attribute, and that is an attribute whose value is an object, and an attribute of an object, or object’s attribute, 

that is an attribute in the objecton of an object.  
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As we are going to see, it may be convenient to regard a value as a pair consisting of an element that we 

shall call the core of the value, and a type: 

val : Value  = Core x Type 
cor : Core = Data | Objecton 

One methodological remark in the end. Let us note that there is a “room” in our model to define constructors 

that take objects as their arguments, and to define structured values, such as, e.g., that include objects. We 

refrain from discussing these options just for the sake of simplicity and brevity. As we are going to see in Sec. 

6.6.5.3, new objects will be built exclusively by object constructors, and by instructions that modify earlier 

constructed object.  

4.6 Yokes 

As we are going to see in Sec. 6.7.2, whenever we declare a variable we define the required type of its future 

values. The same happens when we declare formal parameters of a procedure (Sec. 6.7.4.6). This mechanism 

is typical for many programming languages. In some languages, however, we may expect that future values 

of a variable are restricted not only by their types, but also by some other expected properties. For instance in 

SQL (Anex. ???), one may request that database tables assignable to a table variable have no repetitions in a 

given column, or that databases assignable to a database variable satisfy a subordination relation between 

tables.  

To introduce such mechanisms in Lingua, we define a kind of33 predicates on values, that we shall call 

yokes. We introduce two domains: 

yok  : Yoke   = ValueE ⟼ BooValE 
tra  : Transfer = ValueE ⟼ ValueE  

As we see, every yoke is a transfer, but not vice-versa.  

Although we shall ultimately use yokes, we introduce also transfers to make the domain of reachable yokes 

“sufficiently rich”. This will be seen below.  

A transfer is said to be conservative, if given an error, returns the same error. A transfer constructor is said 

to be diligent, if given conservative transfers returns conservative transfers. All transfer constructors we define 

are diligent, and all transfers reachable in our language are conservative. 

At the level of syntax, transfers and yokes will be represented by transfer- and yoke expressions 

respectively. An example of a yoke expression which describes a property of record-typed data of type 

‘employee’ (see Sec. 0) is the following (we use an anticipated concrete syntax of our language): 

record.salary + record.bonus < 10000. 

The corresponding yoke is satisfied whenever its argument is a record-typed data with (at least) two attributes 

salary and bonus, and the data corresponding to these attributes satisfy the expected inequality. In this example 

record.salary + record.bonus 

is a transfer expression which is not a yoke expression. Its denotation transforms record-typed data into 

integer-typed data. If an argument of this transfer or of the corresponding yoke happens to be not a record 

with attributes salary and bonus that carry integers, then the transfer generates an error. 

By the clan of a yoke, we mean the set of all typed data that satisfy this yoke. Formally we define a function: 

CLAN-Yo : Yoke ⟼ Sub.Value 
CLAN-Yo.yok = {val | yok.val = (tt, (‘boolean’)} 

Now, we define an algebra of transfers AlgTra with three carriers: 

 

33 They are only “kind of predicates” rather than just “predicates”, because their values are boolean values rather than 
just tt and ff.  
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ide : Identifier = … 
tra  : Transfer = … 
yok : Yoke  = … 

Note a certain singularity in our algebra: Yoke is a subset of Transfer.  

The carriers of our algebra do not contain errors, but yokes and transfers may return errors as their values. 

We say that a typed data val satisfies a yoke yok if 

yok.val = (tt, (‘boolean’)) 

Anticipating future concrete syntax of Lingua the yoke expression 

value < 10 

represents a yoke that is satisfied whenever the input composite carries a number that is less than 10. In this 

expression, value is not a variable identifier, or “an argument” of a yoke, but a transfer expression (a key word) 

whose denotation is an identity transfer pass, such that  

pass.val = val  

(see later), and 10 is a transfer expression whose denotation is a transfer create-int.10 such that  

create-int.10 : ValueE ⟼ ValueE 
create-int.10.val =  
 val : Error ➔ val 

true    ➔ (10, (‘integer’)).  

Now, the denotation of our yoke expression is defined as follows (see transfer constructors a little later)34: 

yo-less-in.(pass, create-int.10).val = td-less.(pass.val, create-in.10) = td-less.(val, 10) 

Another example may be a yoke expression 

value + 2 < 10 

which is satisfied if the data carried by the current value incremented by 2 is less than 10. Here value+2 is a 

transfer expression35. In turn, the yoke expression: 

record.salary + record.commission < 7000 

is satisfied if its argument typed-data carries a record with numeric attributes salary and commission whose sum 

is less than 7000. Our three examples explain why we need transfers to build composed yokes in our algebra. 

Most transfer- and yoke constructors will be derived from typed-data constructors, although not necessarily 

all of them, and certainly not from all of them. Some typed-data constructors will not lead to transfer 

constructors, and some transfer constructors will not be derived from typed-data constructors.  

Since in Sec. 4.5 we have refrained from defining algebraic object constructors, we shall not define yoks 

associated to objects either. However, we wish to stress that it is a purely editorial decision not to grow our 

book too much. 

Which typed-data constructors we “bring to the level” of transfers is an engineering decision. As a matter 

of example we shall assume that numerical constructors of typed data will be fully captured by transfer 

constructors, whereas, in the case of arrays and records we shall make available only selection operations.  

We may also define transfer constructors which are not derived from constructors in AlgTypDat, but from 

some transfer-oriented data constructors such as, e.g.,:  

sum-in   : Integerc+  ⟼ Integer                the sum of integers in the sequence 

 

34 As we see in this example we need the identity transfer pass to “duplicate” the “single” argument value. An alternative 
— in our opinion less elegant — might be the introduction on the side of “binary less” also a “unary less”.  

35 From a pure mathematical viewpoint we could omit the keywords in the syntax of yokes, e.g. writing simply “<10” or 
„+2<10”, but such syntax would be rather awkward.   
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no-rep-list  : Integerc+  ⟼ Boolean                    no repetitions in a list 

increasing-in : Integerc+ ⟼ Boolean           increasingly ordered sequence of integers 

Below we list examples of constructors of AlgTra split into five groups.  

1. Specific constructors not derived from constructors of typed data  

tr-pass     :         ⟼ Transfer 
tr-sum-in    :        ⟼ Transfer 

2. Constructors derived from simple-typed-data constructors (but boolean) 

tr-add-in    : Transfer x Transfer ⟼ Transfer 
tr-subtract-in   : Transfer x Transfer ⟼ Transfer 

tr-multiply-in   : Transfer x Transfer ⟼ Transfer 
tr-divide-in    : Transfer x Transfer ⟼ Transfer 

tr-add-re    : Transfer x Transfer ⟼ Transfer 
tr-subtract-re   : Transfer x Transfer ⟼ Transfer 
tr-multiply-re   : Transfer x Transfer ⟼ Transfer 
tr-divide-re   : Transfer x Transfer ⟼ Transfer 

tr-glue     : Transfer x Transfer ⟼ Transfer 

3. Constructors derived from selection constructors for structured typed data 

tr-top      : Transfer     ⟼ Transfer  
tr-get-from-ar   : Transfer x Transfer ⟼ Transfer  
tr-get-from-re   : Transfer x Identifier ⟼ Transfer  

4. Constructors of yokes based on predicates 

yo-equal-in   : Transfer x Transfer ⟼ Yoke 

yo-less-in    : Transfer x Transfer ⟼ Yoke 
yo-no-rep-in   : Transfer     ⟼ Yoke 
yo-increasing-in  : Transfer     ⟼ Yoke 

5. Constructors of yokes based on Kleene’s propositional operators 

yo-true     :         ⟼ Yoke 

yo-and     : Yoke x Yoke   ⟼ Yoke 
yo-or      : Yoke x Yoke   ⟼ Yoke 
yo-not     : Yoke      ⟼ Yoke 
yo-all-of-li     : Yoke      ⟼ Yoke 

yo-exists-in-li   : Yoke       ⟼ Yoke 
yo-all-of-ar   : Yoke       ⟼ Yoke 
yo-exists-in-ar  : Yoke       ⟼ Yoke 

In the first group we have two constructors  

tr-pass.() = pass 

where pass has been already defined, and: 

tr-sum-in : ⟼ Transfer    i.e. 
tr-sum-in.() : ValueE ⟼ ValueE 
tr-sum-in.().val = 
 val : Error    ➔ val 
 sort-va.val ≠ ‘L’  ➔ ‘a list expected’ 
 let 
  (dat, (‘L’, typ)) = val  
 typ ≠ (‘integer’)  ➔ ‘integers expected’ 
 let 
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  int = sum-in.dat 
 int : Error    ➔ int 
 true      ➔ (int, (‘integer’)) 

where sum-in is a summation of a list of integers. Two example definitions of a transfer constructor derived 

from a typed-data constructor is the following 

tr-add-in : Transfer x Transfer ⟼ Transfer 
tr-add-in : Transfer x Transfer ⟼ ValueE ⟼ ValueE 
tr-add-in.(tra-1, tra-2).val = td-add-in.(tra-1.val, tra-2.val) 
 
yo-less-in : Transfer x Transfer ⟼ Yoke 

yo-less-in : Transfer x Transfer ⟼ ValueE  ⟼ BolValE 
yo-less.(tra-1, tra-2).val = td-less-in.(tra-1.val, tra-2.val) 

The definitions of the remaining constructors of groups 2., 3. and 4. are analogous.  

The definitions of boolean constructors of group 5. have to be defined “from scratch” since we have not 

defined such constructors on the level of typed data.  

First constructor of group 5. is a zero-argument constructor that returns a yoke that is satisfied for all values 

(always true): 

yo-true.().val = (tt, (‘boolean’)) for any val : Value 

This yoke will be denoted by TT. i.e., 

TT = yo-true.() 

The remaining constructors of group 5. refer to Kleene’s propositional connectives (see Sec. 2.10) rather than 

to that of McCarthy, as it will be the case for boolean value expressions (Sec 6.5.2). An explanation of this 

decision is at the end of the section. The conjunction of yokes is defined as follows: 

yo-and : Transfer x Transfer ⟼ Yoke 

yo-and.(tra-1, tra-2).val = 
val : Error       ➔ val 
let 

  val-i = tra-i.val               for i = 1, 2 
val-i : Error      ➔ val-i         for i = 1, 2 
sort-va.val-i ≠ (‘boolean’) ➔ ‘boolean expected’   for i = 1, 2 
val-1 = (ff, (‘boolean’))   ➔ (ff, (‘boolean’))  
val-2 = (ff, (‘boolean’))   ➔ (ff, (‘boolean’))  
true         ➔ (tt, (‘boolean’)) 

As we see, to falsify this conjunction, it is enough that at least one of its arguments carry ff. If this is not the 

case, then the result is either an error or a typed-data carrying tt. Constructor tr-not is the same as in 

McCarthy’s case, and tr-or is defined in such a way that guarantees the satisfaction of De Morgan’s law, i.e. 

yo-or.(tra-1, tra-2) = yo-not.(yo-and.(yo-not.tra-1, yo-not.tra-2)) 

The general-quantifier constructors for lists and arrays are defined in the following way (also in Kleene’s 

spirit):  

yo-all-of-li : Transit ⟼ Yoke  

yo-all-of-li.yok.val =          
 val : Error          ➔ val 

sort-va.val ≠ ‘L’        ➔ ‘list expected’   
let 

  (lis, (‘L’, typ)) = val 
 lis = ()           ➔ (tt, (‘boolean’)) 
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 let   
(dat-1,…,dat-n) = lis 

  val-i     = yok.(dat-i, typ)                      for i = 1;n 
 (∃ 1 ≤ i ≤ n) val-i = (ff, (‘boolean’)) ➔ (ff, (‘boolean’)) 
 (∀ 1 ≤ i ≤ n) val-i = (tt, (‘boolean’)) ➔ (tt, (‘boolean’)) 
 true            ➔ ‘never-false’ 

This definition may be said to be consistent with Kleene’s definition of conjunction in the sense that 

ff and ee = ee and ff = ff 

The existential quantification is defined in an analogous way: 

yo-exists-in-li : Yoke ⟼ Yoke    

yo-exists-in-li.yok.val =          
 val : Error           ➔ val 

sort-va.val ≠ ‘L’         ➔ ‘list expected’         
let 

  (lis, (‘L’, typ)) = val 
 lis = ()            ➔ (ff, (‘boolean’)) 
 let   

(dat-1,…,dat-n) = lis 
  val-i     = yok.(dat-i, typ)                      for i = 1;n 
 (∃ 1 ≤ i ≤ n) val-i = (tt, (‘boolean’))  ➔ (tt, (‘boolean’)) 

 (∀ 1 ≤ i ≤ n) val-i = (ff, (‘boolean’))  ➔ (ff, (‘boolean’)) 
 true             ➔ ‘never-true’ 

Also this definition may be seen as consistent with the Kleene’s disjunction where 

tt kl-or ee = ee kl-or tt = tt 

Quantifiers for arrays are defined in an analogous way.  

Why we assume Kleene’s calculus for yokes, rather than the calculus of McCarthy36, may be justified by 

an example of an array a = [1/0, 2/1] and a yoke (in an anticipated syntax where ” / “ denotes a division 

operation): 

exists-in-ar.(1/(a.i) > 0) 

which expresses the fact that there exists an element a.i of a such that 1/a.i > 0. In McCarthy’s calculus, the 

value of this yoke would be an error since the (equivalent) disjunction 

1/a.1 > 0 mc-or 1/a.2 > 0 

evaluates to error, whereas in the calculus of Kleene it evaluates to tt. Besides, in the calculus of Kleene 

disjunction and conjunction are commutative (except for errors), whereas in the McCarthy’s case they are not.  

Two methodological comments are needed at the end of this section. Originally (historically), yokes have 

been introduced by Andrzej Blikle in a denotational model of SQL (Anex ???), where yokes correspond to 

integrity constraints. It seems, however, quite reasonable to think of other applications of yokes. Imagine a 

situation where in an array of numbers we store results of some process of physical measurements. Suppose 

further that we are designing a software that should take action whenever a current measurement comes out 

of a specified fixed interval [p, q]. In that case, it would be enough to declare an array-type variable whose 

yoke describes the required condition. 

The second comment concerns the fact that we have not defined any examples of constructors that would 

build transfers, and therefore also yokes, acting on objects. A the same time, however, we have not excluded 

 

36 This calculus will be used in the algebra of expression denotations in Sec. 6.5.2 since at that level Kleene’s calculus 
is hardly implementable.  
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the possibility of having such constructors. We leave this issue open at the moment, since it might need some 

more research. Note in this place that technically objects carry only attributes and references, whereas all 

associated typed data are stored in deposits.  
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5 CLASSES AND STATES 

5.1 Classes intuitively 

Classes may be regarded as collections of tools used to create and modify objects. They carry three categories 

of tools: 

1. types (maybe none), 

2. methods (maybe none), which are either signatures of procedures, or so called pre-procedures, and 

which include two subcategories: 

a. imperative pre-procedures, functional pre-procedures and their corresponding signatures, 

b. object constructors and their signatures, 

3. one objecton (maybe empty) used as a pattern for all objects generated from this class. 

Let’s forget for a moment about types and methods, and concentrate on objectons carried by classes. Consider 

the following class declaration written in an anticipated syntax37 of Lingua. 

class CartesianPoint 
   let abscissa = 2,15 be real and public tel;    
     let ordinate be real and private tel 
ssalc 

The fact that abscissa is initialized to 2,15 only means that if we generate an object directly from the class, 

then abscissa will be initialized to 2,15 but later we can change its value. In turn the attribute ordinate may be 

(but do not need to) left not initialized. Consequently an object of type CartesianPoint may be of the form: 

‘abscissa’  → (ab-tok, ((‘real’), TT), ‘$’) → (2,15, ((‘real’), TT)) 
‘ordinate’ → (or-tok,  ((‘real’), TT), ‘CartesianPoint’) 
(‘CartesianPoint’) 

or of the form 

‘abscissa’  → (ab-tok, ((‘real’), TT), ‘$’) → (3,16, ((‘real’), TT)) 
‘ordinate’ → (or-tok,  ((‘real’), TT), ‘CartesianPoint’) → (4,75, ((‘real’), TT)) 
(‘CartesianPoint’) 

In the first case the reference of ‘ordinate’ is dangling which expresses the fact that this attribute has been 

declared but not initialized. In the second case it has been initialized to a real value. Since this attribute has 

been declared as private its origin tag is ‘CartesianPoint’. 

In our example both objects of class CartesianPoint are of the same shape. The situation complicates, when 

we introduce recursion to the definitions of a class. Let’s consider the following class declaration written again 

in an anticipated syntax. In this case it includes three declarations:  

1. of an objecton’s pattern,  

2. of a special-purpose functional procedure called an object constructor, 

3. of an imperative procedure which calls the object constructor and modifies global memory states. 

Below we see an example of a program with one class declaration, and one call of a procedure that builds a 

circular object. This procedure calls an object constructor that belongs to a special category of procedures. 

 

37 In a general case declarations of variables indicate types, yokes and privacy status of these variables. At the level of 
colloquial syntax we assume that if the yoke is TT (always true) then we may skip it in the declaration.  
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class ListNode 
 

let no = 23 be integer and public tel; 
let next  be ListNode and public tel 

 
cons ConstructObject(val number as integer, node as ListNode return ListNode) 

  no  := number + 1; 
  next  := node 

snoc 
  

proc BuildCircularList() 
let i be integer  tel; 
let node be ListNode tel; 
i := 1; 
while i <= 3  

   do 
       node := ListNode.ConstructObject(i, node); 
    i   := i+1  
   od; 

node.next.no  := 11 
node.next.next  := node; 

corp 
 
ssalc; 
ListNode.BuildCircularList() 

In this example the attribute next is of the type of the class which is just being declared. The execution of 

BuildCircularList() generates the following sequence of objectons, where the first objecton results from the 

execution of the declaration of local attributes of this procedure: 

 

In the next step our procedure enters the while loop, and there calls the object constructor ConstructObject and 

passes to it two actual value parameters: i of value 1, and node with a dangling reference. The object 

constructor builds an object by copying (with new references) and modifying the objecton of the class. Then 

the new object is assigned to node and the value of i is augmented by one. 

 

In the following step we assign to node a modified class objecton where the formerly created object is 

assigned to next: 
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This action is repeated thus producing the following objecton. Our program exits the loop. 

 

In the last step our program performs two last assignments which in the deepest object modifies the value of 

no, and redirects the reference of the deepest next to the surface objecton. In this way we have constructed a 

circular object. The rules of building objects from classes are formalized in Sec.6.6.5. 

 

At the end of this section let’s list assumptions about classes and objects in our model that we have adopted 

to make it possibly free from technical complications: 

1. We do not introduce neither packages nor compilation units. 

2. Classes do not include inner classes. 

3. As a consequence of 1. and 2. all classes are public. 

4. Classes do not contain not-replicable attributes. 

5. Types and methods are declared exclusively in classes and are public.  

6. A class once declared is never changed, but can be copied and then modified to build a new class 

(heritage). 

7. Objects are created exclusively by object constructors that replicate class objectons.  

8. Some attributes of object may be private; for such attributes, if we wish to provide an external access 

to them we have to declare appropriate getters and/or setters in the corresponding class. 

5.2 Classes formally 

By a class we shall mean a tuple consisting of four elements: an identifier, two mappings (possibly empty) — 

a type environment, and a method environment — and one objecton (possibly empty): 
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cla : Class  = Identifier x TypEnv x MetEnv x Objecton              classes 

tye : TypEnv = Identifier ⟹ Type | {Θ}                  type environments 
mee : MetEnv = Identifier ⟹ Method                method environments 
met : Methods = ProSig | PrePro                        methods 

where Θ is a special element called a pseudotype. The domains ProSig of procedure signatures, and PrePro 

of pre-procedures, will be defined in Sec. 6.6. Each class is, therefore, a tuple of four elements: 

(ide, tye, mee, obn). 

By an empty class we mean a class where all three mappings are empty: 

(ide, [ ], [ ], [ ]). 

Identifiers bound to bodies and types will be called constants, since their values, once assigned to them, are 

never changed. Identifiers bound to values (though references) in state objectons, but not in class objectons, 

will be called variables, since their values may be modified. The first element of a class, the identifier, is 

called an internal name of a class. We will see why we need these internal names in Sec. 6.7.4.2, where we 

describe an action of adding a new attribute to (the objecton of) a class.  

5.3 Stores and states 

The domain of states is defined as follows: 

sta : State   = Env x Store                               states 

env : Env    = ClaEnv x ProEnv x CovRel                environment 

cle : ClaEnv  = Identifier ⟹ Class                  class environments 

pre : ProEnv  = Indicator ⟹ Procedure                   procedure environment 

ind : Indicator  = Identifier x Identifier                   indicators 

sto : Store   = Objecton x Deposit x OriTag x SetFreTok x (Error | {‘OK’})             stores 

cov  : CovRel   = Sub.((DatTyp x DatTyp) | (ObjTyp x ObjTyp))        covering relations 

sft  : SetFreTok = Set.Token                   sets of (free) tokens 

The environment of a state carriers classes, procedures38 (Sec. 6.7.6), and covering relations39 (Sec. 5.4.2), 

and the store carries the rest. Classes and types declared in them are going to be public, whereas their methods 

and attributes are going to be private40. Also the attributes carried by objectons of stores will be private. The 

meanings of “public” and “private” are explained in Sec. 5.4.3.  

If a class is assigned to an identifier in a class environment, then we say that this identifier points to this 

class. In an analogous way we talk about identifiers pointing to types in the type environments of  classes, and 

to pre-procedures in procedure environments.  

Identifiers that point to classes in states are called the external names of these classes, and the corresponding 

classes are said to be declared in sta. 

Attributes that appear in objectons of classes are called class’s attributes. A surface attribute of the objecton 

of a store is traditionally called a variable in this store and state respectively.  

An object of the form (obn, MyClass), where obn has been created by an object constructor (see Sec. 

6.6.5.2) from the objecton of cle.MyClass, is said to be an object of class MyClass. 

The covering relations cov between types will be used to describe a usability regime defined in Sec. 5.4.2.  

 

38 We recall that classes carry pre-procedures rather than procedures. The difference between these two concepts is 
explained in Sec. 6.6. 

39 The decision of putting covering relations in environments is technically not especially relevant. We just decided to 
“keep them in the same place”, where we keep classes and their types.  

40 This decision has an editorial character and serves the technical simplification of our model. 
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The origin tag that appears in a store is called the origin tag of the store, and of the hosting state as well. 

Its role will be explained in Sec. 5.4.3, where we shall talk about a visibility regime. 

The sets of free tokens will be used to provide ”fresh” (not used) tokens, for the declarations of value 

variables and the constructors of new objects. For that sake we assume the existence in our model of a function: 

get-tok : SetFreTok ⟼ Token x SetFreTok 
get-tok.sft = (tok, sft − {tok}))  such that tok : sft 

An objecton my-obn is said to be well-formed in a state sta = ((cle, pre, cov), (obn, dep, ota, sft, err)), if: 

1. for any attribute ide, if obn.ide = !, and dep.(obn.ide) = !, then: 

obn.ide VRA.cov dep.(obn.ide) — value by reference acceptability (see Sec. 5.4.2), 

2. all inner objectons of obn are well-formed in sta. 

A class (ide, tye, mee, obn) is said to be well-formed in a state, if  

1. obn is well-formed in this state, 

2. for every reference (tok, (typ, yok, ota)) in obn, its origin tag ota is either $ or ide41. 

A state sta = ((cle, pre, cov), (obn, dep, ota, sft, err)) said to be well-formed, if: 

1. obn is well formed in sta, 

2. external names of all classes declared in cle coincide with their internal names, 

3. all surface and inner objects in obn are of types that are the names of classes declared in cle,  

4. all classes declared in cle are well-formed, 

5. sft includes only such tokens that to not appear in references bound in dep. 

As we see, the well-formedness of states is mainly about typing. In the sequel we shall make sure that the 

states appearing in the executions of our programs are well-formed. By: 

WfState 

we denote the sets of all well-formed states. For technical convenience we define the following auxiliary 

functions: 

error : Store ⟼ Error         error : State ⟼ Error 
error.(obn, dep, ota, sft, err) = err    error.(env, sto) = error.sto 

Formally we may assume that the function error is defined on the union Store | State. In the same spirit we 

define next two functions: 

is-error : Store ⟼ Boolean       is-error : State ⟼ Boolean 
is-error.sto =            is-error.(env, sto) = is-error.sto 
 error.sto ≠ ‘OK’ ➔ tt 
 true     ➔ ff 

Again, not quite formally, we define a function on the domain (State x SetFreTok) | (State x Error): 

◄ : State x Error ⟼ State 
(env, (obn, dep, ota, sft, err)) ◄ new-err = (env, (obn, dep, sft, ota, new-err)) 
 
◄ : State x SetFreTok ⟼ State 
(env, (obn, dep, ota, sft, err)) ◄ new-sft = (env, (obn, dep, new-sft, ota, err)) 

We also assume that this function will be applicable to stores in an obvious way. We shall use a function: 

declared : Identifier x State ⟼ {tt, ff} 

 

41 This definition is the main cause why we have introduced internal names of classes as the elements of classes (see 
also Sec. 6.7.4.2). An alternative solution might be to talk about the well-formedness of classes only in the context of 
states, that, in our opinion, would be less elegant.  
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to protect us against double declaration of some identifiers. In an obvious way we extend this function to 

stores. 

By an empty state we shall mean every state of the form (([ ], [ ], Ld-cov), ([ ], [ ], ‘public’, { }, ‘OK’)) 
where Ld-cov is a covering relation defined by language designer (see Sec. 5.4.2). As is easy to check, empty 

state is well formed.  

5.4 Two regimes of handling items 

5.4.1 An overview 

By an item, we shall mean a value, a reference, a type, a method  (Sec. 6.6), or a class. All items are storable, 

and we access them through indicators that are tuples of identifiers. To indicate a class, we need one identifier, 

to indicate a type or a procedure, we need two identifiers — one for a class plus one for the type/procedure 

itself — to indicate a value or a reference of a variable, we need one identifier, but in the case of object 

attributes, we may need more identifiers, if such an attribute is located at a deep level of an object.  

The principles of accessing and using items will be described by two systems of rules that we shall call 

handling regimes: 

• A usability regime is described by means of the types of values and the profiles of references, and 

serves the purpose of deciding which values can be “sent” to a chosen operator as its arguments, or can 

be assigned to a chosen reference in a deposit. E.g. we can’t “send” real numbers to an integer division, 

or assign a negative integer to a variable whose type is (‘integer’), but whose yoke requests that the 

assigned value is positive. Technically usability regime is built into the denotations of expressions, 

assignment instruction, variable- and attribute declarations, procedure declarations, and procedure calls. 

• A visibility regime is described by means of the origin tags of references and of states, and serves the 

purpose of deciding which item indicators are accessible at a given stage of program execution; e.g., 

we shall assume that private attributes of a class will be visible exclusively in the bodies of procedures 

declared in this class. Technically, a reference, to be visible in a state must have the origin tag identical 

with the tag of the state (cf. assignment instructions in Sec. 6.5). 

Note that pre-procedures are not regarded as items. They will not be accessible from syntactic level, and will 

constitute sort of “raw components” used in building procedures. This technique, which is explored in Sec. 

6.7.6, has been adopted to describe the execution of mutually recursive procedures declared in different 

classes. Procedure declarations included in the declarations of classes will first assign pre-procedures to 

procedure names in method environments of classes, and later a special mechanism of procedure opening 

(Sec. 6.7.6) will assign procedures to their indicators in procedure environments of states. Although formally 

procedure declarations in classes build pre-procedures, we shall talk, for simplicity, about procedures declared 

in classes.  

Note a significant differences between two described regimes — usability is a property of values, whereas 

visibility is a property of the indicators of items. We may colloquially say that a locally declared procedure is 

visible only in a local state, but precisely speaking, what may be seen or not is the indicator of a procedure 

rather than a procedure itself.  

In two following sections we give a birds-eye view to the ideas of our handling regimes, to be later 

incorporated in our model.  

5.4.2 Usability regime 

Basic rules of usability regime are the following 

1. Every value includes a type, and every reference includes a profile consisting of a type, a yoke and an 

origin tag. 
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2. If a value is going to be assigned to an attribute (via its reference), by a declaration (Sec. 6.7.2), or by 

an assignment instruction (Sec.6.5), or by a parameter passing mechanism of a procedure (Sec.6.6.3.4), 

then the type of the attribute must accept the type of the value, and the value must satisfy the yoke of 

the reference. The concept of type acceptance is explained below.  

3. If a function (operation) is applied to its arguments, then the types of arguments “expected” by the 

function must accept the types of the current arguments. 

To formalize the concept of type acceptance we return to the notion of a covering relations with the following 

domain (Sec. 5.3): 

cov : CovRel = Sub.((DatTyp x DatTyp) | (ObjTyp x ObjTyp)) 

The fact that (typ-1, typ-2) : cov will be also written as typ-1 cov typ-2, and will be said that typ-1 covers, 
or accepts typ-2. As we see, a data type may cover only another data type, but not an object type, and vice 

versa. The typesetting of cov in bold is just a “meta-syntactic sugar” to make some meta-formulas easier to 

read. 

We assume that each covering relation cov will be partly defined by a language designer, and partly by a 

programmer. Consequently it will be a union of two (disjoint) relations: 

cov = Ld-cov | Pr-cov 

where 

1. Ld-cov is a component defined by a language designer, i.e. available in all programs of a given 

language, 

2. Pr-cov is a component defined by a programmer, i.e. available exclusively in the program where it 

has been established. 

For instance, a language designer may decide that a data type (‘integer’) covers data type (‘small-integer’), 
and a programmer — that an object type ‘employee’ covers object type ‘accountant’.  

Now, for every covering relation cov we define two induced acceptability relations:  

TTA.cov ⊆ Type x Type                 type-by-type acceptability relation 

VRA.cov ⊆ Reference x Value            value-by-reference acceptability relation 

The first of them is a completion of cov to a reflexive and transitive relation, which means that TTA.cov is 

the least relation on types such that   

(1) cov ⊆ TTA.cov,  

(2) (typ, typ) ⊆ TTA.cov for every typ : Type, 
(3) if (typ1, typ2), (typ2, typ3) : TTA.cov then (typ1, typ3) : TTA.cov. 

The second induced relation concerns not only a relationship between types but also the satisfaction of the 

yoke by the value  

(tok, (typ-r, yok, ota)) VRA.cov (dat, typ-v)   
iff   

(1) typ-r TTA.cov typ-v         and 
(2) yok.(dat, typ-v) = (tt, ((‘boolean’),TT)) 

In Sec. 5.3 we have assumed that the relationship ref VRA.cov val must be satisfied in all well-formed states.  

In defining the denotational level of Lingua we shall give our programmers a tool for the creation of 

covering relations by enriching current relations by new pairs. For this sake we assume the existence in our 

model of a function of enrichment with the following signature: 

enrich-cov : CovRel x Type x Type ⟼ CovRel | Error 

and the following definitional scheme: 

enrich-cov.(cov, typ-1, typ-2) = 
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typ-1 : ObjTyp and typ-2 /: ObjTyp  ➔ 'typ-2 must be an object type'  
typ-2 : ObjTyp and typ-1 /: ObjTyp  ➔ 'typ-1 must be an object type' 
typ-1 = typ-2          ➔ ‘equal types can’t be used’ 

 typ-1 cov typ-2          ➔ ‘redundant definition’42 
 other cases          ➔ other error signals 
 true             ➔ cov | {(typ-1, typ-2)} 

We leave the “other cases” not specified to avoid going into too many technical details. An example of a 

pair of types that should be rejected by enrich-cov may be (typ ,(‘A’, typ)). 

Note that our constructor does not check if object types added to cov are carrying the names of declared 

classes. Such a check must refer to a state, and therefore will be introduced at the level of denotations in Sec. 

6.7.5.  

5.4.3 Visibility regimes 

Zadaję sobie pytanie, czy ten rozdział nie powinien być przeniesiony na koniec Sec.6 jako podsumowanie 

mechanizmów widoczności, gdy czytelnik będzie już wiedział jak działają wywołania procedur? Z drugiej 

strony jakaś zapowiedź reżymów widoczności jest w tym miejscu chyba potrzebna.  ??? 

From a programmer’s perspective, visibility rules explain in which programming contexts a given item 

indicator may be used (is visible). E.g. we will set a rule that private attributes of a class may be referred to 

exclusively in the bodies of procedures declared in this class. On the other hand, items locally declared in the 

body of a procedure will be visible exclusively in this body.  

In our model of object-oriented languages we will have two orthogonal “dimensions” of visibility statuses:  

• procedure-dependent visibility: all items locally declared in procedure bodies will be visible 

exclusively in these bodies,  

• class-dependent visibility: selected items in classes may be declared as private. 

Let’s start from the former, and let’s anticipate an assumption later formalized in Sec. 6.3, that every program 

in our model consists of a (possibly composed) declaration followed by a (possibly composed) instruction. 

This assumption does not limit the expressiveness of programs, but considerably simplifies our model. Under 

this assumption all global instructions of a program,  i.e. all instructions except local instructions of procedure 

calls, operate on a common global environment, and a common global-state objecton. It is so, since 

instructions may only change values assigned to references in deposits.  

Assume now that we call an imperative procedure in some current state which we call initial global state 

ig-sta = (g-env, ig-sto), and which consists of a global environment and an initial global store. In our model 

the execution of a call consists of three steps: 

• First, we create an initial local state il-sta = (g-env, il-sto), that consists of a global environment, and 

an initial local store. The latter binds (in the objecton) only formal parameters. At the same time it 

inherits the whole deposit from the global store. Formal reference-parameters point directly to the 

references of actual-reference parameters, and the references of the remaining global variables become 

orphans (Fig. 6.6.3-2 in Sec. 6.6.3.4) 

• Next, we execute the body of the procedure thus transforming the initial local state into a terminal local 

state tl-sta = (tl-env, tl-sto). Since the bodies of procedures may be arbitrary programs, in the course 

of their executions local classes, procedures and variables may be declared.  

• At the end of the call, we exit from the call, and create a terminal global state tg-sta = (g-env, tg-sto), 
where we regain the global environment, and global deposit (Sec. 6.6.3.6). At this stage all locally 

declared classes, procedures, and variables cease to exist, and therefore are no more visible.  

 

42 Mathematically we could have assumed that in this case the enrichment operation returns an unchanged cov relation. 

However, if a programmer tries to add a pair of types that is already in cov, then they probably do it by mistake, and 

therefore such fact should be signalized by the system.  
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Note now, that in the above anticipation of the mechanism of imperative procedures we have made three 

important decisions concerning global visibility: 

• all global classes are visible in all local states of procedure calls, since they are declared in the global 

environment, 

• the references of all actual reference parameters are visible in local stores, 

• all locally declared classes and variables cease to exist after the termination of the call. 

All these decisions have an engineering character, since from a mathematical perspective, we could have 

decided differently, e.g. that locally declared items remain visible after exiting a procedure call, or that only 

some of the globally declared items are visible locally. 

As we are going to see in Sec. 6.7.4.6, our mechanism of public visibility is even more complicated, since 

in procedure declarations we accept an anticipated visibility of procedures that haven’t been declared yet. At 

the same time, however, in the case of types we require an ex post visibility, which means that a type must be 

declared to be visible.  

Let us proceed now to privateness. We assume — again for the simplicity of our model — that this visibility 

status applies only to the attributes of classes and objects, which means that they may be private or public, but 

all other items, i.e. variables, classes, types and procedures, are always public. The visibility status of  

attributes is established in a class declaration, and later is inherited by all objects of this class.  

Technically the visibility status of an attribute is in fact the visibility status of its reference, and the latter 

depends on the origin tag of the reference according to the following general rules: 

General visibility rules  

1. A reference is visible in a state, if the origin tag of this reference 

1.1. either is $, or 

1.2. coincides with the origin tag of the state.  

2. A reference must be visible whenever we intend to: 

2.1. get a value assigned to it in evaluating an expression, 

2.2. change the value assigned to it in executing an assignment instruction.  

3. The origin tags of references and states are established when these references and states are created, 

and later they can’t be changed. 

We will say that a variable is declared in a state, if it is bound in the objecton of this state.  

If a variable has been declared in a state, then we shall say that this state is a hosting state of this variable 

and ot its value. If we declare an attribute in a class, then we say that this class is a hosting class of this attribute 

and of its value.  

If an origin tag of an attribute is a name of a class, then this attribute is said to be private for this class. 

Such an attribute will be visible only in states whose origin tag is the name of the class. As we are going to 

see, the only such states will be the local state of the calls of procedures declared in this class.  

Operational visibility rules 

Let MyClass be a class named ‘MyClass’, and let myProc be an arbitrary procedure declared in this class, 

and named ‘myProc’.  

4. When we declare an attribute in a class called ‘MyClass’, then: 

4.1. if this attribute is to be private, then its origin tag is set to ‘MyClass’, 
4.2. if this attribute is to be public, then its origin tag is set to $. 

5. When we declare a variable in a state, then it is always public, and therefore the origin tag of its 

reference is $. Note that a variable which is local to a procedure call is “locally public” for this call.  

6. Local states of a call of myProc have origin tags ‘MyClass’, which means that private attributes of 

type ‘MyClass’ are visible in these states. Of course, public attributes are visible by principle.  

7. When we pass an actual value parameter to a procedure call, then the reference of the corresponding 

formal parameter gets the yoke and the origin tag of the reference of the actual parameter (visibility 

inherited),  
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8. When we pass an actual reference parameter to a procedure call, then its reference becomes the 

reference of the corresponding formal parameter (visibility is inherited). 

Note that rule 6. allows for the construction of dedicated procedures, traditionally called getters and setters, 

to be used when we wish to reach private attributes of objects. This rule is “implemented” in the constructors 

of the denotations of value expressions (Sec. 6.5.2), and reference expressions (Sec. 6.5.4). 

To go deeper into the details of these rules let’s analyze an example illustrated in Fig. 5.4.3-1. Consider a 

program that we shall call the main program, and assume that the execution of this program starts in a state 

whose origin tag is $. Since, as we are going to see in Sec. 6.4, instructions may only change values assigned 

to attributes (but not their references), starting from the instruction of the main program, all states will have a 

common fixed environment, let’s call it global environment, and a common fixed objecton, let call it global 

objecton. Together they will be components of all consecutive global states and their global stores. In our 

example  the global state is the following: 

• In the global environment it binds three items: 

o A class MyClass named ‘MyClass’ with: 

▪ a private class attribute ‘att1’ with origin tag ‘MyClass’, 
▪ a public class attribute ‘att2’ with origin tag $, 

▪ a pre-procedure myProc named ‘myProc’, 
▪ an object pre-constructor named ‘myCons’,  

o A procedure myProc named ‘myProc’; its indicator is a pair of identifiers (‘MyClass’, 
‘myProc’), but for the lack of space on the picture we show only one of them, 

o An object constructor named ’myCons’; object constructors belong to the category of 

procedures (a comment as above), 

• In the objecton it binds 

o two (public)  object variables ‘myObj1’, and ‘myObj2’ pointing to objects of type ‘MyClass’. 
As a rule, the objectons of these objects have been generated by an object constructor; note that 

each of them has one public attribute and one private one, 

o a public variable ‘var’. 

Now, assume that one of the instructions of our main program is a call of the procedure myProc with one 

value parameter, and reference parameter. This call creates a local state, and applies to it a program, that is the 

body of the procedure. The initial local state of this program includes (Sec. 6.6.3.2): 

• a global environment inherited from the global state (we do not show it in the figure),  

• a new local store with the origin tag that is the name of the class, where myProc was declared — in 

our case it is ‘MyClass’; the latter fact makes visible in this state all private attributes with origin tag 

‘MyClass’.  

According to the rules of passing actual parameters to formal parameters, described in Sec. 6.6.3.4, the 

objecton of the local store, let’s call it local objecton, binds two formal parameters. We assume additionally 

that the program of the body includes a declaration of a local variable ‘loc-var’. Altogether the local objecton 

binds, therefore, three public variables:   

• a local variable ‘loc-var’ with origin tag $, declared in the procedure body according to the rule 5., 

• a formal value-parameter ‘for-val-par’ pointing to a reference with a fresh token and the profile of 

actual value-parameter ‘myObj1’, that points to a twin of the value of ‘myObj1’,  

• a formal reference-parameter ‘for-ref-par’ pointing to the reference of actual reference-parameter 

‘myObj2’, 

Now, let’s analyze the visibility perspectives of our main program that operates on the global state, and of the 

program that constitutes the body of our procedure, and operates on the local state: 

The visibility perspective of the main program: 

• The globally declared class and both procedures. 

• Two globally declared (public) object-variables ‘myObj1’ and ‘myObj2’. We can assign their values to 

another (public) variable, we can assign a new value to this variable, and we can pass this variable as 
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an actual parameter to a procedure call. However, we can’t reach the private attribute ‘att1’ of either of 

these objects, unless by a dedicated procedure (getter or setter) declared in MyClass. In our case this 

is myProc. 

• One globally declared (public) variable ‘var’. 

The visibility perspective of the body program: 

• All globally and locally declared classes and procedures. 

• One local variable ‘loc-var’ declared in the body program. 

• One local object-variable ‘for-val-par’ that points to a twin of the value of actual parameter ‘myObj1’.  

• One local object-variable ‘for-ref-par’ that points directly to the reference of ‘myObj2’ in the (inherited 

by the local store) global deposit.   

Let’s note at the end that when we call locProc, then the local state of myProc becomes for locProc a global 

state with all the consequences of this fact, but with one exception — its origin tag is ‘myClass’ rather than 

$. At the same time, however, all variables bound at this level, either locally declared, or passed as parameters, 

are public, and their publicness is inherited by the local states of all levels of the locality. 
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Fig. 5.4.3-1 An illustration of the visibility concept 
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6 DENOTATIONS 

6.1 The carriers of the algebra of denotations 

The denotations of our language will constitute an algebra of denotations AlgDen that will become a 

component of the diagram of algebras described in Sec. 3.4. The carriers of this algebra are the following: 

Primitive carriers 

ide : Identifier    = …                       identifiers 

prs : PriStat    = {‘private’, ‘public’}                privacy statuses indicators 

Applicative carriers43 

tra  : TraExpDen   = Transfer              transfer-expression denotations 

yok : YokExpDen   = Yoke                yoke-expression denotations 
ted : TypExpDen   = WfState  ⟼ TypeE                      type-expression denotations 

ved  : ValExpDen   = WfState  →  ValueE           value-expression denotations 

red : RefExpDen   = WfState  ⟼  ReferenceE           reference-expression denotations 

Imperative carriers  

dcd : DecDen    = WfState   → WfState             declaration denotations 

pod : ProOpeDen   = WfState  ⟼ WfState                procedure opening denotation 

ctd  : ClaTraDen    = Identifier  ⟼ WfState → WfState     class-transformation denotations 

ind : InsDen    = WfState   → WfState          instruction denotations 
ppd : ProPreDen   = WfState   → WfState         program preamble denotations 
prd : ProDen    = WfState   → WfState                program denotations 

Declaration-oriented carriers 

loi  : ListOfIde    = Identifierc*                            lists of identifiers 
dse : DecSec    = ListOfIde x TypExpDen               declaration sections 

fpd : ForParDen   = DecSecc*                  formal-parameter-denotations 
apd : ActParDen   = ListOfIde                       actual-parameter-denotations 

cli  : ClaInd     = {‘empty-class’} | Identifier              class indicators 

Signature carriers  

ips : ImpProSigDen  = ForParDen x ForParDen   imperative-procedure signature denotations 
fps : FunProSigDen = ForParDen x TypExpDen   functional-procedure signature denotations 

ocs : ObjConSigDen = ForParDen x Identifier       object-constructor signature denotations 

The denotations of value expressions, declarations, instructions and programs are partial functions since all of 

them may generate infinite executions.  

Type expressions are used in the declarations of types, variables, class attributes and methods. The role of 

the domain of program preamble denotations will be explained in Sec. 6.3 

Note that the domains of items — i.e., of values, references, types, procedure and classes — are not the 

carriers of our algebra, which means that they are not going to have their counterparts in the algebras of syntax. 

Values, references, types and classes will be (indirectly) represented by expressions, and procedures — by 

declarations and calls.  

 

43 In early programming languages used at the turn of the 1940s and 1950s, programs were sequences of simple 
instructions called “commands”; therefore, they could be said to be written in an “imperative mood”. Complex 
expressions came into play later in higher-order languages such as Algol and Fortran. Expressions were regarded as 
tools to be “applied” to get values. Over time, languages (practically) without instructions, i.e., where programs were 
expressions, started to emerge and were called “applicative languages”. One of the first was Lisp — a language for 
manipulating lists.     
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An applicative denotation, except transfers, is said to be conservative, if given a state that carries an error, 

returns this error as a result. A constructor of applicative denotations (including transfers) is said to be diligent, 

if given conservative denotations as arguments return a conservative denotation as a result. As we are going 

to see, all applicative denotations reachable in our language will be conservative. 

An imperative denotation is said to be conservative, if given a state that carries an error, returns the same 

state as a result. A constructor of imperative denotations is said to be diligent, if given conservative denotations 

as arguments returns a conservative denotation as a result. Typical imperative denotations in Lingua will be 

conservative which implementationally means that once an error message is raised during the execution of a 

program, the execution aborts and the error message is signalized. However, our model of errors allows for 

an introduction of  error-handling mechanisms, where occurrences of errors trigger recovery actions. An 

example of a corresponding not-diligent constructor of instruction denotations is discussed in Sec. 6.5.7. 

In the subsections that follow we shall define the constructors of our algebra of denotations.  

6.2 Identifiers, class indicators and privacy statuses 

Identifiers, class indicators and privacy statuses have a singular character in our model since they are common 

for the algebras of denotations and syntax. We decided (a mathematical decision) that talking about the 

“denotations of identifiers” on one hand, and “syntax of identifiers” on the other, and similarly for two 

remaining categories, would be a too-far going fundamentalism. We assume, therefore, that their denotational 

carriers and their abstract-, concrete- and colloquial syntactic carriers are the same, and are just sets of strings 

of characters.  

Identifiers are algebraically built by zero-argument constructors, one for every identifier. Each of them 

makes an identifier “out of nothing”: 

build-id-ide.() = ide                      for every ide : Identifier 

Here () denotes an empty tuple of arguments.  

We recall in this place (cf. Sec. 2.13) that the future algebra of syntax of our language will be constructed 

as a homomorphic co-image of the (unique) reachable subalgebra of AlgDen. Consequently, only reachable 

denotations will have their counterparts at the level of syntax. Class indicators will be generated by two 

constructors: 

create-class-ind-of-empty : ⟼ ClaInd 
create-class-ind-of-empty.() = ‘empty-class’ 

create-class-ind-of-parent : Identifier ⟼ ClaInd 
create-class-ind-of-parent.ide = ide 

Their role will be explained in Sec. 6.7.3. Privacy statuses are also built by two constructors: 

build-ps-private : ⟼ PriStat 
build-ps-private.() = ‘private’ 

build-ps-public : ⟼ PriStat 
build-ps-public.() = ‘public’ 

The role of these elements was explained in Sec. 5.4. 

6.3 Programs and their segments 

Before we proceed to the denotations of expressions, instructions and declaration we shall take a “strategic” 

decision about the future syntax of our programs. We presume that they will consist of three segments 

sequentially composed in this order: 

1. a preamble consisting of (sequentially interleaving) instructions and declarations, 

2. one universal procedure-opening command open procedures, 
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3. an instruction.  

Of course, all mentioned above instructions may be structured, i.e. including other instructions. Besides, the 

first and the third segment may be trivial skip-segments.  

As we will see, the procedure-opening command open procedures is a special tool for the elaboration of 

recursive procedures whose declarations may belong to different classes (details in Sec. Sec. 6.6.1 and 6.7.6).  

The assumed restriction of the structure of programs has partly engineering and partly mathematical 

justification.  

At the engineering side it should help programmers to better understand and control the “behaviors” of 

their programs. Declarations build tools to be used in programs, and therefore it seems reasonable to start from 

them in developing a program. In turn, instructions included in preambles are necessary for building values, 

and in particular objects, to initialize declared variables and attributes .  

At the mathematical level our assumption will simplify the mechanism of passing returning the references 

of formal reference-parameters of procedure calls (Sec. 6.6.3.5) and consequently also the rule of building 

correct procedure calls (Sec. 9.4.6.3). It also standardizes the process of correct program development (Sec. 

9.4.1). 

So far, our assumption about programs’ structure was described at the level of syntax44. To bring it to 

denotations we introduce the following constructor: 

make-prog-den : ProPreDen x {open-pro-den} x InsDen ⟼ ProDen 
make-prog-den.(ppd, pod, ind) = ppd ● open-pro-den ● ind 

where  

open-pro-den : WfState → WfState 

is a denotation of command open procedures defined in Sec. 6.7.6. We also define three constructors of the 

declarations of program preambles: 

make-ppd-of-dcd : DecDen ⟼ ProPreDen                        an insertion 

make-ppd-of-dcd.dcd = dcd 

make-ppd-of-ind : InsDen ⟼ ProPreDen                    an insertion 
make-ppd-of-ind.ind = ins 

compose-ppd : ProPreDen x ProPreDen ⟼ ProPreDen 
compose-ppd.(ppd-1, ppd-2) = ppd-1 ● ppd-2 

Set-theoretically first two constructors are identity functions, but algebraically they “make” program 

preambles out of declarations and instructions. In the subsequent sections the constructors of DecDen and 

InsDen will be defined in such a way, that open-pro-den will not belong to their reachable parts. 

6.4 Instructions 

6.5 Expressions 

6.5.1 Type expressions 

Type expressions are used in four contexts: 

1. in type declarations, where we build a new type and store it in a type environment of a class for future 

use, 

 

44 A temporary resignation from our denotation-to-syntax philosophy serves only an intuitive explanation of the structure 
of future programs.  
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2. in variable declarations, where we declare a new variable and assign a profile to it (we recall that types 

are components of profiles), 

3. in attribute declaration — analogously, 

4. in pre-procedure declarations, where we assign profiles to formal parameters.  

The signatures of constructors of type-expressions denotations are the following: 

ted-create-bo  :               ⟼ TypExpDen 
ted-create-in  :               ⟼ TypExpDen 
ted-create-re  :               ⟼ TypExpDen   
ted-create-tx   :               ⟼ TypExpDen 

ted-create-ot  : Identifier            ⟼ TypExpDen 

ted-constant   : Identifier x Identifier        ⟼ TypExpDen 
ted-create-li  : TypExpDen           ⟼ TypExpDen 
ted-create-ar  : TypExpDen           ⟼ TypExpDen 

ted-create-re  : Identifier x TypExpDen      ⟼ TypExpDen 
ted-put-to-re  : Identifier x TypExpDen x TypExpDen ⟼ TypExpDen 

First constructor is a zero-argument constructor that creates a boolean-type expression denotation “out of 

nothing”: 

ted-create-bo.().sta =  
is-error.sta  ➔ error.sta 
true    ➔ (‘boolean’) 

The presence and the role of this constructor in AlgDen is the same as in the case of the constructors of 

identifiers. The remaining zero-argument constructors are defined in a similar way. 

Constructors of the next subgroup are created from these type constructors that create “new types”. For 

instance: 

ted-create-re.(ide, ted).sta = 
 is-error.sta   ➔ error.sta 
 ted.sta : Error ➔ ted.sta 
 let 
  typ = ted.sta 
 true     ➔ ty-create-re.(ide, typ) 

This constructor calls constructor ty-create-re from AlgDatTyp. Note that, e.g., the body constructor ty-put-
to-re does not create a new body, and therefore we do not introduce a corresponding constructor of 

denotations.  

So far we have defined constructors corresponding to the types of data. Our next constructor builds the 

denotation of an expression that returns a type of an object, i.e. an identifier: 

ted-create-ot.ide.sta = 
 is-error.sta ➔ error.sta 
 true    ➔ ide 

Although intentionally ide is supposed to be the name of a class, we do not check, if this is indeed the case, 

since — as we are going to see in Sec. 6.7.4.2 — we may need to define an object type (temporarily) associated 

to a class which “hasn’t been declared yet”. However, as we are going to see in Sec. 6.7.4.3, such “undefined 

object types”, will not be declarable. 

Our last constructor is ted-constant that corresponds to a type-constant.  This constructor describes the 

action of reading a previously declared type from a type environment of a class: 

ted-constant.(ide-cl, ide-ty).sta = 
 is-error.sta   ➔ error.sta 
 let 
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  ((cle, mee, cov), sto) = sta 
 cle.ide-cl = ?   ➔ ‘class unknown’ 
 let 
  (ide-cl, tye, mee, obn) = cle.ide-cl                 well-formedness of sta 
 tye.ide-ty = ?   ➔ ‘type unknown’ 
 tye.ide-ty = Θ  ➔ ‘type not concretized’ 
 true      ➔ tye.ide-ty 

We are talking here about “constants”, since a type once assigned to an identifier in a class can’t be changed.  

At the end a comment about structural data types such as list-, array, or record types. Notice that object 

types are never structural in this way, i.e. we may build a type of integer arrays, but not of object arrays. This 

is an engineering decision.  

6.5.2 Transfer and yoke expressions 

Analogously to type expression we are talking also about transfer- and yoke expressions, but we assume that 

their denotations are just transfers and yokes, rather than functions from states to transfers and yokes 

respectively. I.e., 

ted  : TraExpDen  = Transfer 
yed : YokExpDen  = Yoke 

It is an engineering decision that transfers and yokes are, contrary to types, not storable. Consequently the 

constructors of transfer- and yoke expression denotations are the constructors describes in Sec. 4.6.  

6.5.3 Value expressions  

The denotations of value expressions are partial functions, that given a state return a value or an error: 

ved : ValExpDen = WfState → ValueE              value-expression denotations 

We split value expressions into six categories. Contrary to the former case, all these categories belong to the 

common carrier of value expressions:  

1. fixed-value expressions that return a typed data independently of the current state, 

2. selection expressions that return a value pointed by a variable or an attribute of an object, 

3. functional-procedure calls that return values built by procedures, 

4. composed expressions associated with typed-data constructors.  

5. boolean expressions, 

6. conditional expressions. 

The signatures of constructors of the denotations of value expressions are listed below.  

Constructors of fixed-value-expression denotations         

ved-bo.boo   :                ⟼ ValExpDen for boo : {tt, ff} 
ved-in.int    :                ⟼ ValExpDen for int : Integer 
ved-re.rea    :                 ⟼ ValExpDen for rea : Real 

ved-tx.tex    :                ⟼ ValExpDen for tex : Text 

Constructors of selection-expression denotations  

ved-variable   : Identifier             ⟼ ValExpDen 
ved-attribute   : Identifier x Identifier         ⟼ ValExpDen     

Constructor of functional procedure calls 

ved-call-fun-pro  : Identifier x Identifier x ActParDen    ⟼ ValExpDen 

Constructors based on typed-data constructors (examples) 
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ved-divide-rea  : ValExpDen x ValExpDen       ⟼ ValExpDen 
ved-create-list  : ValExpDen            ⟼ ValExpDen 
ved-get-from-rec : ValExpDen x Identifier        ⟼ ValExpDen  
…    

Constructors of boolean-expression denotations 

equal     : ValExpDen x ValExpDen       ⟼ ValExpDen 

less      : ValExpDen x ValExpDen       ⟼ ValExpDen 
ved-and    : ValExpDen x ValExpDen       ⟼ ValExpDen 
ved-or     : ValExpDen x ValExpDen       ⟼ ValExpDen 
ved-not     : ValExpDen            ⟼ ValExpDen 

Conditional-expression constructor 

ved-if      : ValExpDen x ValExpDen x ValExpDen  ⟼ ValExpDen 

As we are going to see, fixed-value expressions always evaluate to typed data. The same will be true for 

composed expressions based on typed-data constructors. Consequently the only expressions that evaluate to 

objects will be selectors and functional-procedure calls. In the latter case procedure calls will return objects 

previously saved in stores and (possibly) modified by assigning new values to their attributes. Unlike in the 

case of typed-data expressions that return records, and may add or remove record attributes, object-oriented 

functional procedures may only modify the values assigned to attributes. This is an engineering decision.  

The modifications of earlier created and declared objects are performed exclusively by instructions, and 

can only change values assigned to attributes. The only context where we can add a new attribute to an 

objecton are class declarations where we build class objectons (Sec. 6.7.4.2). These objectons are later used 

as patterns to build objects when we create object variables in stores by object constructors (Sec . 6.7). 

The zero-argument constructors of booleans, integers, reals and words play a similar role to the zero-

argument constructors of body expressions: 

• they allow to write constant expressions “directly from the keyboard”, 

• they make the reachable parts of the carrier of value-expressions denotations not empty.  

All zero-argument constructors are defined accordingly to a common scheme which we show on the example 

of value expressions for integers. In this case we use a meta-constructor ved-integer which given an integer, 

e.g. 3 returns a zero-argument constructor in our algebra: 

ved-int.3 : ⟼ ValExpDen                   i.e. 
ved-int.3 : ⟼ WfState → Value | Error 
ved-int.3.().sta = 
 is-error.sta ➔ error.sta 
 true    ➔ (3, ((‘integer’), TT)) 

In this way, for every integer acceptable in our model we assume to have a dedicated constructor. 

Consequently, on the side of concrete syntax we can write constant-value expressions like 3, 245, or 340987502. 

If we had introduced only one zero-argument constructors corresponding to, say integer 1, then instead of 
writing 3 we had to write, e.g., ((1+1)+1). 

The constructor that follows builds the denotations of expressions that return values assigned to state 

attributes, i.e. to variables: 

ved-variable : Identifier ⟼ ValExpDen               i.e. 
ved-variable : Identifier ⟼ WfState ⟶ ValueE 
ved-variable.ide.sta 
 is-error.sta   ➔ error.sta 
 let 
  (env, (obn, dep, st-ota, sft, ‘OK’)) = sta 
 obn.ide = ?   ➔ ‘variable not declared’ 
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 dep.(obn.ide) = ? ➔ ‘variable not initialized’ 
 true      ➔ dep.ref 

The evaluation of a variable expression returns an error, if the variable hasn’t been initialized45.  

Next constructor corresponds to an expression that returns a value assigned to an attribute of a computed 

object: 

ved-attribute : ValExpDen x Identifier ⟼ ValExpDen           i.e. 
ved-attribute : ValExpDen x Identifier ⟼ WfState ⟶ ValueE 
ved-attribute.(ved, ide).sta = 
 is-error.sta       ➔ error.sta 
 ved.sta = ?       ➔ ? 

ved.sta : Error      ➔ ved.sta 
ved.sta /: Object     ➔ ‘object expected’ 

 let 
(obn, cl-ide) = ved.sta 

 obn.ide = ?       ➔ ‘attribute unknown’ 
 let 
  (tok, (typ, yok, ota))       = obn.ide            the reference of ide in obn 
  (env, (obn, dep, st-ota, sft, ‘OK’)) = sta 
  dep.(obn.ide) = ?    ➔ ‘attribute not initialized’ 

ota ≠ $ and ota ≠ st-ota  ➔ ‘attribute not visible’ 
 true          ➔ dep.(ob-obn.at-ide) 

An expression that returns a value assigned to an attribute of an object may be evaluated successfully only if 

this attribute is visible in the current state. Here we realize the rules 1 and 2.1 of Sec. 5.4.3. Next constructor 

corresponds to calling a functional procedure: 

call-fun-pro : Identifier x Identifier x ActParDen  ⟼ValExpDen 

We postpone its definition till Sec.6.6.4.2 where we discuss procedure calls.  

As an example of a constructor based on a data constructor we show a constructor associated with the 

division of real numbers: 

ved-divide-rea: ValExpDen x ValExpDen ⟼ ValExpDen          i.e. 
ved-divide-rea: ValExpDen x ValExpDen ⟼ WfState ⟶ Value | Error 
ved-divide-rea.(ved-1, ved-2).sta = 
 is-error.sta   ➔ error.sta 
 ved-i.sta = ?    ➔ ?      for i = 1,2 
 ved-i.sta : Error  ➔ ved-i.sta   for i = 1,2 
 let 
  val-i = ved-i.sta       for i = 1,2 
  val  = td-divide-rea.(val-1, val-2) 
 true      ➔ val 

Our constructor “calls” the typed-data constructor td-divide-re (see Sec. 4.4) that performs the following 

actions: 

1. checks if val-i’s are of real types, and if val-2 is different from zero,  

2. divides data parts of these values; this constructor also checks if the result is not too large, and if it is 

so, it generates an error message indicating an overflow, 

 

45 In their colloquial English programmers frequently say “a variable abc” when they mean (should say), “a variable 

expression abc”. The difference between these concepts is clear at the level of abstract syntax where build-id.abc() is 

a variable and ved-expression(abc) is an expression. Then, at the level of colloquial syntax both are written as abc. 

which may led to confusion.  
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3. returns the computed quotient or an error.   

Since in the algebra of typed data (Sec. 4.4) we have not defined constructors of boolean data (explanation 

below), we have to define constructors of boolean-expression denotations now, and we define them “from 

scratch”. There are two groups of boolean expressions that we shall discuss. First group is built over 

comparison relations such as, e.g., an equality relation. 

equal : ValExpDen x ValExpDen ⟼ ValExpDen        i.e. 
equal : ValExpDen x ValExpDen ⟼ WfState ⟶ Value | Error 
equal.(ved-1, ved-2).sta = 
 is-error.sta     ➔ error.sta 
 ved-i.sta = ?     ➔ ?       for i = 1,2 
 ved-i.sta : Error    ➔ ved-i.sta    for i = 1,2    
 let 
  (cor-i, typ-i) = ved-i.sta        for i = 1,2 
 typ-1 ≠ typ-2     ➔ ‘compared values must be of the same type’ 
 not comparable.typ-1 ➔ ‘values not comparable’ 
 cor-1 = cor-2     ➔ (tt, (‘boolean’) 
 true        ➔ (ff, (‘boolean’) 

We assume that comparable is a metapredicate (a parameter of our model) that distinguishes between 

comparable and not comparable values depending on their types. The use of this metapredicate explains why 

we have not introduced comparison constructors at the level of data46.  

Second group of boolean constructors is associated with logical connectives. Below we show an example 

of such a constructor associated to conjunction: 

ved-or : ValExpDen x ValExpDen ⟼ ValExpDen        i.e. 
ved-or : ValExpDen x ValExpDen ⟼ WfState ⟶ Value | Error 
ved-or.(ved-1, ved-2).sta = 
 is-error.sta    ➔ error.sta 
 ved-1.sta = ?    ➔ ? 
 ved-1.sta : Error  ➔ ved-1.sta 
 let 
  (cor-1, typ-1) = ved-1.sta 

typ-1 ≠ (‘boolean’)  ➔ ‘boolean value expected’ 
 cor-1 = tt     ➔ (tt, (‘boolean’))  

ved-2.sta = ?    ➔ ? 
ved-2.sta : Error  ➔ ved-2.sta 

 let 
  (cor-2, typ-2) = ved-2.sta 
 typ-2 ≠ (‘boolean’)  ➔ ‘boolean value expected’ 
 cor-2 = tt     ➔ (tt, (‘boolean’)) 
 true       ➔ (ff, (‘boolean’)) 

Note that the constructed expression denotation is not transparent for errors, and even not for undefinedness. 

If ved-1 evaluates to (tt, (‘boolean’)), then the final result is (tt, (‘boolean’)) even if the evaluation of ved-2 

generates an error or loops. This evaluation pattern is referred to as lazy evaluation. The opposite is an eager 

evaluation — as in the remaining examples of constructors — where we evaluate both subexpressions in the 

first place, and only then try to calculate the final result. Due to the laziness of our constructor  an expression 

like 

x > 0 implies 1/x > 0 i.e.  x ≤ 0 or 1/x > 0 

 

46 As a matter of fact, we could have introduced comparison constructors at the level of values, but for the sake of 
uniformity we decided to introduce them at the level of expressions where we define constructors corresponding to 
logical connectives.  
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is true for all values of x. Note that with an eager evaluation it would generate an error for x = 0. Our last 

constructor correspond to if-then-else-fi expressions.  

ved-if : ValExpDen x ValExpDen x ValExpDen ⟼ ValExpDen 

ved-if.(ved-1, ved-2, ved-3).sta = 
 is-error.sta     ➔ error.sta 
 ved-1.sta = ?    ➔ ? 

let 
val-1 = ved-1.sta  

val-1 : Error     val-1 
let 

(cor-1, typ-1) = val-1  
typ-1 ≠ (‘boolean’)   ‘boolean-expected’  
cor-1 = tt       ved-2.sta 
cor-1 = ff       ved-3.sta 

Here we also have to do with a lazy evaluation. In this case the advantage of laziness is even better visible. 

Consider the following example written in an anticipated syntax: 

if x > 0 then sqr(x) else sqr(-x) fi  

where sqr(x) denotes the square root of x. With an eager evaluation this expression evaluates to an error for all 

x except x = 0.  

6.5.4 Reference expressions 

In programming languages without such deep value-structures such as our objects, a reference on the left-

hand side of an assignment is represented by a single identifier. In our case the situation is different, since we 

may wish to assign a value to a deep reference in an object, as, e.g., 

node.next.no := 11 

(cf. example discussed in Sec. 5.1). To handle this problem, we introduce expressions that given a state return 

a reference, or an error: 

red : RefExpDen = WfState ⟼ ReferenceE 

We shall need only two constructors of the denotations of such expressions. The first one corresponds to a 

single variable: 

ref-variable : Identifier ⟼ RefExpDen           i.e. 
ref-variable : Identifier ⟼ WfState ⟼ ReferenceE 
ref-variable.ide.sta = 
 is-error.sta ➔ error.sta 
 let 
  (env, (obn, dep, st-ota, sft, ‘OK’)) = sta 
 obn.ide = ? ➔ ‘variable not declared’ 
 true    ➔ obn.ide 

Our second constructor builds expression denotations that may return references assigned to deep attributes 

of objects:  

ref-attribute : ValExpDen x Identifier  ⟼ RefExpDen      i.e. 

ref-attribute : ValExpDen x Identifier  ⟼ WfState ⟼ ReferenceE 
ref-attribute.(ved, at-ide).sta = 
 is-error.sta       ➔ error.sta 
 ved.sta = ?       ➔ ? 
 ved.sta : Error      ➔ ved.sta 
 ved.sta /: Object     ➔ ‘object expected’ 
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 let 
  (va-obn, va-ide)        = ved.sta 
  (env, (obn, dep, st-ota, sft, ‘OK’)) = sta 
 va-obn.at-ide = ?     ➔ ‘attribute not declared’ 
 let 
  (tok, (typ, yok, at-ota)) = va-obn.at-ide 
 at-ota ≠ $ and at-ota ≠ st-ota ➔ ‘attribute not visible’ 
 true          ➔ va-obn.at-ide 

Here we realize the rules 1. and 2.2 of Sec. 5.4.3. As we see, references computed by reference expressions 

are always pointed either by variables or by object attributes. In other words, the only operations that allow us 

to get references are selection operations. It is, of course, an engineering decision. 

6.5.5 Signatures of constructors 

Instructions modify state by assigning new values to variables and attributes. We shall define the following 

constructors of instruction denotations:  

atomic instructions 

assign    : RefExpDen x ValExpDen         ⟼ InsDen           assignments 

call-imp-pro : Identifier x Identifier x ActParDen x ActParDen ⟼ InsDen             imp. proc. calls 

call-obj-con : Identifier x Identifier x Identifier x ActParDen  ⟼ InsDen            obj. const. calls 

skip-ins   :                  ⟼ InsDen           trivial instruction  

structural instructions 

if     : ValExpDen x InsDen x InsDen       ⟼ InsDen   conditional instr. 

if-error    : ValExpDen x InsDen           ⟼ InsDen   error elaboration 

while    : ValExpDen x InsDen          ⟼ InsDen       while loops 
compose-ins : InsDen x InsDen            ⟼ InsDen     sequential compos. 

Atomic instructions are called in this way, since they do not include other instructions as their components. 

The skip instruction has a technical character and has been introduced to cover the case of functional 

procedures (Sec.6.6.4.1) whose bodies consist of an expression alone, i.e. without a preceding program. Its 

denotation is an identity function on states. 

The calls of imperative procedures and of object constructors will be described in Sec. 6.6.3.6 and Sec. 

6.6.5.3. 

6.5.6 Assignment instructions 

An assignment instruction computes a reference and a value, and then assigns this value to this reference in 

the current deposit: 

assign : RefExpDen x ValExpDen ⟼ InsDen 
assign : RefExpDen x ValExpDen ⟼ WfState → WfState 
assign.(red, ved).sta = 
 is-error.sta       ➔ error.sta 
 ved.sta = ?       ➔ ?  

ved.sta : Error      ➔ sta ◄ ved.sta 
red.sta : Error      ➔ sta ◄ red.sta 

 let 
  val            = ved.sta 
  ref             = red.sta 
  (tok, (typ, yok, re-ota))     = ref 

(env, (obn, dep, st-ota, sft, ‘OK’)) = sta 
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 re-ota ≠ $ and re-ota ≠ st-ota ➔ ‘reference not visible’ 
 not ref VRA.cov val    ➔ ‘incompatibility of types’ 
 yok.val = (ff, (‘boolean’))  ➔ ‘yoke not satisfied’ 
 true          ➔ (env, (obn, dep[ref/val], cov, st-ota, sft, 'OK'))  

In this definition we realize the rule 2.2 of Sec. 5.4.3.  

6.5.7 Structural instructions 

Structural instructions are built from atomic instructions using four constructors announced in Sec. 6.5. A 

conditional composition of instructions is defined as follows: 

if : ValExpDen x InsDen x InsDen ⟼ InsDen 

if.(ved, ind-1, ind-2).sta = 
is-error.sta    sta 
ved.sta = ?    ? 
ved.sta : Error   sta ◄ ved.sta 
let  

val = ved.sta  
val : Object   ➔ ‘typed data expected’ 
let 
 (dat, typ) = val 
typ ≠ (‘boolean’)  sta ◄ ‘boolean value expected’ 
dat = tt      ind-1.sta 
true       ind-2.sta 

Note that due to while loops (see below) and imperative-procedure calls (Sec. 6.6.3.6) the execution of both 

component instructions may be infinite, which means that the state ind-1.sta or ind-2.sta may be undefined.  

The next structural constructor is related to an error-handling mechanism. It activates a rescue action that 

is an instruction associated with an error message indicated by value expression, called error trap, whose 

value is a word identical with this message.  

if-error : ValExpDen x InsDen ⟼ InsDen 

if-error.(ved, ind).sta = 
 not is-error.sta ➔ sta 

let 
message = error.sta  
sta-1   = sta ◄ ‘OK’ 

ved.sta-1 = ?  ➔ ? 
let 
 val = ved.sta-1 
val : Error   ➔ sta ◄ ‘trap generates an error’ 
let 
 (cor, typ) = val 
typ ≠ (‘text’)  ➔ sta ◄ ‘word expected’  
cor ≠ message ➔ sta ◄ ‘trap not adequate’  
ind.sta-1 = ?  ➔ ? 
let 
 sta-2 = ind.sta-1 
is-error.sta-2  ➔ sta ◄ ‘rescue action generates an error’  
true     ➔ sta-2  

If the input-state sta does not carry an error, then this state becomes the output state, since there is no error to 

handle.  
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In the opposite case, a temporary state sta-1 is created by removing error err from sta. In the new state, 

we compute the value of the trap expression ved. Seven situations may happen in this moment: 

1. the evaluation of trap expression does not terminate, 

2. the evaluation terminates, but the computed value is an error, 

3. the computed value is not a word value, 

4. the computed value is a word value, but its data part is different from the error message that we want 

to trap, 

5. the computed value caries the trapped message, but the rescue instruction does not terminate , 

6. the rescue instruction terminates but it generates an error message itself, 

7. the rescue instruction terminates without an error, and its terminal state is the resulting state. 

Of course, the above constructor should be regarded as an example, only showing that error-handling 

mechanisms may be described in our model. Other examples of such mechanisms are shown in Anex ??? 

where we discuss operations on databases.  

The definition of the constructor of while loops involves a fixed-point definition of the constructed 

instruction: 

while : ValExpDen x InsDen ⟼ InsDen 

while.(ved, ind).sta =  
is-error.sta    sta 
ved.sta = ?    ? 
ved.sta : Error   sta ◄ ved.sta 
let 

val = ved.sta  
val : Object   ➔ ‘typed data expected’ 
let 
 (dat, typ) = val 
typ ≠ (‘boolean’)  sta ◄ ‘boolean value expected’ 
dat = ff      sta 
ind.sta = ?    ➔ ? 
ind.sta : Error  ➔ ind.sta 
true       (while.(ved, ind))).(ind.sta) 

Notice that the unique (least) solution of this equation is not the while constructor, but the effect of its 

application to its arguments, i.e. while.(ved, ind).  

Due to while instructions, the denotations of instructions may be partial functions. The partiality of 

while.(ved, ind) may happen in three situations: 

1. the evaluation of the boolean expression ved does not terminate; this may be the case if ved calls a 

functional procedure, 

2. the execution of the body ind does not terminate, 

3. the execution of the “main loop” does not terminate.  

Comment 6.5.7-1 In the definition of while we have to do with a fixed-point equation in a CPO of partial functions 
InsDen (Sec. 2.7). For any pair (ved, ind) the solution of this equation is the denotation: 

while.(ved, ind) : State → State 

To see this equation written explicitly in our CPO, let us introduce the following notations: 

NotOK    = {(sta, sta) | is-error.sta} 

ExpEr     = {(sta, sta ved.sta) | ved.sta : Error} 

IsObj  = {(sta, sta ’typed data expected) | ved.sta : Object} 

NotBoo  = {(sta, sta ’boolean-expected’) | ved.sta is not a boolean value} 

FF           = {(sta, sta) |  ved.sta = (ff, ((‘boolean’), TT))} 

TT           = {(sta, sta) |  ved.sta = (tt, ((‘boolean’), TT))} 

Now, our equation is the following: 

X = NotOK | ExpEr | IsObj | NotBoo | FF | TT●ind●X 
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Since the operators | and ● are continuous, the least solution of that equation exists, and since the coefficients of 
that equations have mutually disjoint domains, from Theorem 2.7-1 we may conclude that its solution is a function, 
and may be described by the following formula: 

X = (TT● ind)* ● (NotOK | ExpEr | IsObj | NotBoo | FF) 

 

The last constructor of structural instructions corresponds to sequential composition of instructions, and is the 

following: 

compose-ins : InsDen x InsDen ⟼ InsDen 
compose-ins.(ind-1,ind-2) = ind-1 ● ind-2 

Sequentially composed instructions are executed one after another. 

6.6 Methods 

6.6.1 An overview of methods 

Methods in our model fall into three basic operational categories: 

• imperative methods, 

• object constructor methods, 

• functional methods. 

In each of these categories a method may be abstract or concrete. Abstract methods will be otherwise called 

procedure signatures, and concrete methods — procedures or object constructors respectively. The domain 

of methods and related domains are defined by the following equations (for actual-parameter denotations and 

the denotations of signature (see Sec. 6.1): 

met : Method  = Procedure | ProSigDen                            methods 

pro : Procedure = ImpPro | FunPro  | ObjCon               procedures 

ipr  : ImpPro   = ActParDen x ActParDen  ⟼ Store → Store       imperative procedures 

fpr   : FunPro   = ActParDen x TypExpDen ⟼ Store → ValueE        functional procedures 

oco : ObjCon  = ActParDen x Identifier   ⟼ Store → Store          object constructors47 

prs : ProSigDen = ImpProSigDen | FunProSigDen | ObjConSigDen    proc. signature denotations 

It must be emphasized that domains associated with concrete methods are not the carriers of our algebra of 

denotations (cf. Sec. 6.1). Therefore, they will not have syntactic counterparts. This is why we are not talking 

about “procedure denotations”, but about “procedures” as such. At the side of syntax we will only have 

procedure declarations and calls, and their denotation will belong to the denotations of declarations and of 

instructions respectively.  

In turn, procedure signatures will be represented at the side of syntax, and therefore we talk about their 

denotations. Their simple constructors will be defined in Sec. 6.6.2.  

It may be worth mentioning in this place that procedures and procedure-signature denotations belong to 

two different worlds. Procedures are functions that given actual parameters return store-to-store functions. 

Note that actual parameters do not have types, since they are just identifiers. In turn, signatures are not 

functions. They are lists of formal-parameter denotations, and formal parameter do have types! Signatures 

may be said to be “incomplete procedure-declarations” (they have no bodies), whereas procedures are the 

effects of procedure declarations.  

 

47 “Object constructors” should not be confused with “constructors in algebras”. The former constitute a category of 
procedures, whereas the latter are functions “between” carriers of algebras. We decided to use the same word in both 
cases because the literature has already established customs to call them that way. 
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In this overview we shall concentrate on procedures, since their model requires some specific solutions. 

Let’s start from imperative procedures that are functions which take two lists of actual parameters — value 

parameters and reference parameters — and return store-to-store functions. We shall assume that reference 

parameters will constitute a unique communication channel between procedures and the “external word”. A 

possible alternative might be the introduction of global variables, but such a solution would complicate rules 

of the construction of correct procedure calls (cf. Sec. 9.4.6.3), and besides would be — in our opinion —

error prone. We want to make sure that all interactions of a procedures with global states will be explicit in 

their declarations.  

A second important issue about procedures is that they modify stores rather than states. Although procedure 

calls will be state-to-state functions, we can’t assume procedures to be such functions, since it would lead to 

a situation where a procedure may take as an argument a state, where this procedure has been declared. In a 

simplified version such a situation would lead to the following set of domain equations: 

Procedure  = State → State 
State    = Identifier ⟹ Procedure 

This set can’t be solved on the ground of usual set theory, since no function can take itself as an argument. 

Self-applicable functions constitute so called reflexive domains48, and have been used in early denotational 

models of Algol 60, where a procedure can take itself as a procedural parameter49.  

After these explanations, let’s note that to use procedures in a programming language we need tolls: 

• to create them, 

• to declare them, i.e. to save them in states, 

• to call, and execute them. 

In earlier versions of our denotational model investigated in [25], [27], [30] and [34] procedures were created 

by declarations out of procedures’ components and were saved in the environments of states. Recursive 

procedures were defined as least solutions of single fixed-point equations and mutually recursive procedures 

as least solutions of sets of such equations.  

If we would like to apply this mechanism in our case, we had to assume that all procedure declarations of 

all classes are elaborated simultaneously, meaning that all classes have to be declared simultaneously and 

recursively. Such a solution would lead to technical complications since, in that case, we would have to define 

a chain-complete partial order (a CPO, see Sec. 2.4) in the domain of classes. A CPO in a set of tuples of a 

common length (like classes) is usually defined componentwise. Now, whereas to define a CPO in the domain 

of procedure environments is a rather routine task, it is not clear (at least not clear for us), how to define an 

adequate CPO in the domains of type environments and objectons.  

Facing this problem we decided to move the creation of procedures from the time of their declarations in 

classes to a later time when all classes have been declared, but prior to the time when procedures are called. 

Technically the declarations of procedures in classes will not create and store procedures, but only pre-

procedures that will be later used to create all procedures “in one step” once all classes have been declared. 

In this step programs perform one global declaration open-pro-den (Sec. 6.7.6). To simplify future rules of 

program construction we have assumed in Sec. 6.3 that this operation appears only once in every program and 

is located between declarations and instructions.  

As a consequence of our assumption, pre-procedures will be defined as functions that given an environment 

return a procedure. The domains of pre-procedures are therefore the following: 

ppr : PrePro  = ImpPrePro | FunPrePro | ObjPreCon            pre-procedures 

 

48 A model of self-applicable functions has been described by Dana Scott (see [74]) in 1970., but its technical complexity 
discouraged researchers from its use. Independently it turned out that the use of self-applicable functions in 
programming may be error prone.   

49 This mechanism was implemented in Algol 60 by the so-called “copy rule”, where a compiler or interpreter copied the 
text of a procedure body into the context of a program where this procedure was to be used.  
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ipp  : ImpPrePro = Env ⟼ ImpPro                  imperative pre-procedures 
fpp  : FunPrePro  = Env ⟼ FunPro                functional pre-procedures 

opc : ObjPreCon  = Env ⟼ ObjCon                  object pre-constructors 

When a procedure pro is called we execute the corresponding pre-pro in a declaration time environment dt-
env, i.e., we execute the function 

pre-pro.dt-env : Store → Store 

which given a call-time store returns a new store. The declaration-time environment is common to all 

procedures, and is the environment passed to open-procedures. Since no declarations follow open-
procedures, all states that follow the execution of this declaration have a common environment which differs 

from the declaration-time environment dt-env only by having procedures declared in procedure environment 

pre. 

6.6.2 Signatures and parameters 

We start from two simple constructors of lists (tuples) of identifiers: 

build-loi  : Identifier      ⟼ ListOfIde 

add-to-loi : Identifier x ListOfIde  ⟼ ListOfIde 

We skip their obvious definitions. Given this domain we may define declaration sections that consist of lists 

of identifiers followed by a type-expression denotation and a yoke-expression denotation : 

build-dse : ListOfIde x TypExpDen ⟼ DecSec 

Such a section expresses the fact that the given identifiers are formal parameters of a given type, e.g., at the 

side of syntax: 

x, y, z array-of-integers  

Formal-parameter denotations are tuples of declaration sections, hence we need two constructors to build 

their domain:  

build-fpd  : DecSec      ⟼ ForParDen 

add-to-fpd  : DecSec x ForParDen ⟼ ForParDen 

First constructor makes a formal parameter denotation out of a declaration section, the second — adds a new 

section to a parameter denotation. Their definitions are obvious. Now, we can show signatures of three 

constructors of the domains of formal and respectively actual parameters: 

build-ipsd   : ForParDen x ForParDen  ⟼ ImpProSigDen  

build-fpsd   : ForParDen x TypExpDen  ⟼ FunProSigDen  

build-ocsd   : ForParDen x ForParDen  ⟼ ObjConSigDen 

build-apd  : ListOfIde        ⟼ ActParDen     build actual-parameter denotations 

We again skip their obvious definitions. 

At the end let us explain the idea of abstract methods, i.e. of signatures. As we know, an important part of 

classes constitute methods. Ultimately these methods should be concrete, since only then we may use (call) 

them. However, we may wish to define a parent class with abstract methods to have more flexibility in the 

creation of their (inheriting) children classes. We thus do not define concrete procedures, but only their “types” 

represented by lists of parameters. 

6.6.3 Imperative pre-procedures 

6.6.3.1 An intuitive understanding 

First step on the way to understand the mechanism of imperative procedures is to understand the execution of 

their calls. Since an imperative-procedure call is an instruction, it takes an initial state, and transforms it into 
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a terminal state. These states will be called global states to distinguish them from local states that the 

procedure creates to execute its body.   

The execution of a call of a procedure declared in class MyClass is performed in four steps illustrated in 

Fig. 6.6.3-1. 

1. A local initial store li-sto is created where initially the only variables bound in the objecton are the 

identifiers of formal parameters. Value parameters point to new references, and these references point 

to the twins (Sec. 4.5) of the values of actual value-parameters. Reference parameters point to the 

references of actual parameters. Local initial deposit carries all reference of the global deposit, but all 

these references, except the references of reference parameters, are orphan references. The origin tag 

of the local store is MyClass. 

2. A local initial state is created by combining a declaration-time environment dt-env with the local 

initial store. The declaration-time environment must be, therefore, somehow “remembered” when the 

procedure is declared.  

3. The local initial state is transformed by the body of the procedure (a deep program) into a local 

terminal state (lt-env, lt-sto). During the execution of the body some local (temporary) value variables, 

classes, types and procedures may be declared. 

4. The local terminal state is transformed into a global terminal state, with the (unchanged) global initial 

environment gi-env and a global-terminal store gt-sto, where actual reference parameters regain 

access to their earlier references. All locally declared items cease to exist. 

One comment is necessary about the declaration-time environment mentioned in point 2. As we are going to 

see in Sec. 6.7.6, this environment is “loaded” to a procedure when this procedure is created by a global 

declaration open-procedures, which is executed as the last declaration in a program (Sec. 6.3). 

Consequently, the environments of all consecutive states of the program have the same environment which is 

the output environment of global declaration.  

 

Fig. 6.6.3-1 The execution of an imperative-procedure call 

6.6.3.2 Creating imperative pre-procedures 

A formal description of the execution illustrated in Fig. 6.6.3-1 is included in the definition of a constructor 

of imperative pre-procedures. We recall that pre-procedures became procedures when they receive an 
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environment as an argument. In the definition below we use two functions describing the mechanisms of 

passing and returning parameters, which will be defined later in Sec.6.6.3.4 and Sec.6.6.3.5 respectively.  

create-imp-pre-pro : ImpProSigDen x ProDen x Identifier ⟼ ImpPrePro 
create-imp-pre-pro : ForParDen x ForParDen x ProDen x Identifier ⟼  

   ⟼ Env ⟼ ActParDen x ActParDen ⟼ Store → Store 
create-imp-pre-pro.(fpd-v, fpd-r, prd, cl-ide).dt-env.(apd-v, apd-r).ct-sto =  
 is-error.ct-sto  ➔ ct-sto                    dt- declaration time 

 let                            ct- call time 

li-sto = pass-actual.(fpd-v, fpd-r, apd-v, apd-r, cl-ide).dt-env.ct-sto        li- local initial 
 is-error.li-sto  ➔ ct-sto ◄ error.li-sto 
 let 
  li-sta = (dt-env, li-sto)                        local initial state 
 prd.li-sta = ?  ➔ ? 
 let 
  lt-sta = prd.li-sta                           local terminal state 

 is-error.lt-sta  ➔ ct-sto ◄ error.lt-sta 
 let 
  (dt-cle, dt-pre, dt-cov) = dt-env 

(lt-env, lt-sto)     = lt-sta 
  gt-sto       = return-formal.fpd-r.ct-sto.lt-sto.dt-cov 

is-error.gt-sto ➔ ct-sto ◄ error.gt-sto 
 true     ➔ gt-sto                        global terminal store 

First, the pre-procedure builds a local initial store by passing actual parameters to formal parameters and by 

setting cl-ide, the name of a class, as the origin tag of the store. As we will see in Sec. 6.7.4.6, cl-ide will be 

the class name where our pre-procedure will be defined. Then, it creates a local initial state by combining the 

declaration-time environment with the call-time store.  

The local initial state is transformed into a local terminal state by a program prd that constitutes the body 

of the procedure. 

If this transformation terminates, and does not issue an error, then the global terminal store is created by 

returning the references of formal reference parameters to actual reference parameters, and by going back to 

the call-time origin tag. If this store carries no error message, then it is issued by the procedure. Next the 

mechanism of procedure call (Sec. 6.6.3.6 and Fig. 6.6.3-1) combines the global-terminal store with call-time 

environment into global-terminal state.  

6.6.3.3 A static compatibility of parameters 

The first step in passing actual parameters to formal parameters consist in checking if they are statically 

compatible with each other, i.e., if the lists of corresponding identifiers are of the same length, and additionally 

there are no repetitions of identifiers on the list of formal parameters. To formalize this checking process we 

define two auxiliary functions. We skip their (rather obvious, but tedious) formal definitions showing only 

examples: 

list-of-for-par : ForParDen ⟼ (Identifier x TypExpDen)c*     e.g. 

list-of-for-par.(((x, y, z), ted-1), ((q, r), ted-2)) =  
((x, ted-1), (y, ted-1), (z, ted-1), (q, ted-2), (r, ted-2)) 

 
list-of-ide : (Identifier x TypExpDen)c*  ⟼ Identifierc*       e.g. 

list-of-ide.((x, ted-1), (y, ted-1), (z, ted-1), (q, ted-2), (r, ted-2)) = (x, y, z, q, r) 

Now, the checking function is defined as follows: 

statically-compatible : ForParDen x ForParDen x ActParDen x ActParDen ⟼ Error | {‘OK’} 

statically-compatible.(fpd-v, fpd-r, apd-v, apd-r) = 
let   
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 for-val-par = list-of-ide.(list-of-for-par.fpd-v)) 
 for-ref-par = list-of-ide.(list-of-for-par.fpd-r)) 
 for-par = for-val-par © for-ref-par 
are-repetitions.for-par     ➔ ‘formal par repetitions’ 
length.for-val-par ≠ length.apd-v  ➔ ‘incompatible numbers of value parameters’ 
length.for-ref-par ≠ length.apd-r  ➔ ‘incompatible numbers of reference parameters’ 

 true            ➔ ‘OK’ 

In words, the lists of formal and actual parameter denotations of a procedure call are statically compatible if: 

1. no formal parameter appears twice on a combined list of value- and reference parameters; a similar 

property of actual value-parameters is, of course, not required, 

2. the mutually corresponding lists of formal and actual parameter denotations are of the same lengths.  

Note that empty lists of corresponding parameters are compatible.  

The defined property is called static since it can be checked at compilation time, i.e., before program 

execution. Note that “static” does not mean “syntactic” — static compatibility requirement can’t be built into 

a grammar, and therefore it can’t be checked by a syntax analyser.  

6.6.3.4 Passing actual parameters to a procedure 

Ten rozdział przeczytajcie szczególnie uważnie, bo jest w nim wiele technikaliów. ??? 

Function pass-actual describes the process of passing  the values and references of actual parameters of a 

procedure call to the body of the called procedure. Technically it creates a local initial store to be elaborated 

by the body (Sec.6.6.3.2). Actual value-parameters must be declared and initialized, and actual reference-

parameters must be declared, but not necessarily initialized.  

Fig. 6.6.3-2 illustrates the mechanism of passing parameters. As was already shown in Sec. 6.6.3.2, the 

environment of the local input state will be a declaration-time environment whereas its store will be a local 

initial store created by our function.  

 

Fig. 6.6.3-2 Passing actual parameters to a procedure (a simplified picture) 

We assume the following rules about the creation of local initial stores. All of them have an engineering 

character: 
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1. The only identifiers bound initially in the local store are formal parameters. Of course, during the 

execution of the call some local variables may be added (declared). As a consequence, procedures 

can’t use global variables and, therefore, their only “side effects” are due to reference parameters.  

2. The current references of actual reference-parameters ref-ar become the references of formal reference 

parameters ide-fr. To “meet the expectations” of procedure’s designer, the actual types of  ide-ar’s, 
i.e., the types of ref-ar’s, must be accepted by the declared types of formal parameters ide-fr’s. In turn 

formal reference-parameters receive the yokes of actual parameters. We recall that when we declare a 

procedure, we indicate the types of its formal parameters but leave their yokes unspecified (a 

mathematical decision). Otherwise, we had to ensure the compatibility of actual with formal yokes, 

i.e., we had to compare yokes, which might be challenging to implement. 

3. Fresh references ref-fv’s are created for formal value-parameters. The types of these references are the 

declared types of formal parameters, and their yokes are the yokes of actual references ref-av’s. To 

these references we assign the twins (see later) t-val-av’s of the values val-av’s of actual parameters. 

The new references must accept these twins. The picture shown in Fig. 6.6.3-2 is “simplified” since 

making a twin of an object requires replacing all tokens of its references by fresh ones, which may 

result in substantial modification (enrichment) of the deposit.  

4. The origin tags of actual parameters become the origin tags of formal references, which seems to be 

an obvious choice. If an actual parameter is public, the corresponding formal parameter should be 

public as well. In turn, if it is private, then it should remain private with the unchanged origin in the 

local state. 

To define a function of passing actual to formal parameters, we shall need a function that given a value returns 

its twin. A twin of a typed data is just this data, and a twin of an object is created by replacing all tokens in 

this object by fresh ones. Before we proceed to a formal definition of this function let’s observe the following 

facts: 

1. A description of an object requires the context of a deposit, and therefore our function must modify 

deposits. 

2. The replacement of tokens by fresh tokens consumes tokens, and therefore our function must modify 

sets of free tokens. 

3. Due to the fact that objects may include cycles, we have to stop the replacement of “old” tokens by new 

ones whenever we encounter a token that “is already new”. To do this our function will “monitor” a set 

of new tokens. 

To define the twining function we shall need two new domains: 

snt  : SetNewTok = Set.Token                     sets of new tokens50 

tot  : TupleOfTok = Tokenc*                      tuples of tokens 

and two new functions: 

tokens-of  : Value x Deposit         ⟼ Set.Token 
get-new-tok  : Integer x SetNewTok x SetFreTok  ⟼ TupleOfTok x SetNewTok x SetFreTok 

The first function given a value and a deposit returns the set of all tokens included in this value. We skip its 

obvious definition. The second generates a tuple of fresh tokens and appropriately modifies the sets of new 

tokens and free tokens. Its definition is the following: 

A może też uznać, że ta definicja jest oczywista??? 

get-new-tok.(n, snt, sft) =  
 n ≤ 0  ➔ ‘number of tokens must be positive’ 
 n = 1  ➔  
  let 

 

50 Formally speaking we do not introduce here a new domain since SetNewTok = Set.Token = SetFreTok, but a new 
metaname to distinguish between two arguments of our function snt and sft  that are of the same sort.  
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   (tok, sft-1)  = get-tok.sft 
   snt-1    = snt | {tok} 
  ((tok), snt-1, sft-1) 
 n > 1  ➔ 
  let 
   (tok, sft-1)    = get-tok.sft 
   snt-1      = snt | {tok} 
   (tot, snt-2, sft-2)  = get-new-tok.(n-1, snt-1, sft-1) 
  ((tok) © tot, snt-2, sft-2) 

The function that creates twins of values is the following: 

create-twin : Value x Deposit x SetNewTok x SetFreTok ⟼  
⟼ (Value x Deposit x SetNewTok x SetFreTok) 

create-twin. (val, dep, snt, sft) =  
val : TypDat    ➔ (val, dep, snt, sft) 
tokens-of.val ⊆ snt ➔ (val, dep, snt, sft)  

 let 
  (obn, cl-ide)            = val         the argument value is an object 

[ide-1/ref-1,…,ide-n/ref-n]       = obn 
  (tok-i, prf-i)            = ref-i 
  ((new-tok-1,…,new-tok-n), sft-1, snt-1)  = get-new-tok.(n, snt, sft)   

  new-ref-i =  
tok-i : snt   ➔ ref-i 
true     ➔ (new-tok-i, prf-i)            for i = 1;n 

  obn-1             = [ide-1/new-ref-1,…,ide-n/new-ref-n] 
val-i              = dep.ref-i   for i = 1;n      
(twin-val-1, dep-1, snt-2, sft-2)    = create-twin.(val-1, dep, snt-1, sft-1)  

  … 
(twin-val-n, dep-n, snt-(n+1), sft-(n+1)) = create-twin.(val-n, dep-(n-1), snt-n, sft-n)  

  new-dep           = dep-n[new-ref-1/twin-val-1,…,new-ref-n/twin-val-n] 
  twin-val             = (obn-1, cl-ide) 
 true       ➔ (twin-val, dep-n, , snt-(n+1), sft-(n+1)) 
   

In the first step our function checks if the value val to be “twinned” is a typed data, and if this is the case, it 

returns the same value. Deposit and both sets of tokens remain unchanged and the process stops.  

If the value is an object (obn, cl-ide), then we check if all tokens in this value have been already replaced, 

and if this is the case then the process stops. 

Otherwise our function replaces all not-new references in obn by fresh references, and appropriately 

modifies the sets of new tokens and free tokens. Of course, in the first step of our recursion none of these 

references are new, but in further steps such a situation may happen, if there are cycles in our object.  

After the first step of our recursion we have a new objecton obn-1, but all its references are dangling. Then, 

for every val-i assigned to a reference of the original  obn we create recursively a twin of this value, and we 

assign this twin to the corresponding reference of obn-1. In each such step we appropriately modify the 

deposit and both sets of tokens “inherited” from the former step.  

Nie wiem dlaczego, ale nie do końca jestem pewien definicji create-twin. Z drugiej jednak strony wydaje się 

dość oczywiste, że taka funkcja musi dać się zdefiniować. ??? 

Now we are ready to define the function of passing actual to formal parameters. Let  cl-ide be the name of 

a class where our procedure is being declared: 

pass-actual : ForParDen x ForParDen x ActParDen x ActParDen x Identifier ⟼  
                        ⟼ Env ⟼ Store ⟼ Store 
pass-actual.(fpd-v, fpd-r, apd-v, apd-r, cl-ide).dt-env.ct-sto =   
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 is-error.ct-sto    ➔ ct-sto                         call time store 

1. checking the static compatibility of parameters    
let 

message  = statically-compatible.(fpd-v, fpd-r, apd-v, apd-r) 
message ≠ ‘OK’   ➔ ct-sto ◄ message 

2. identifying the identifiers, values, and references of actual and formal parameters 

 let   
for k, n ≥ 0 

 ((ide-fv.i, ted-fv.i) | i=1;k)     = list-of-for-par.fpd-v       (see Sec. 6.6.3.3) 

 ((ide-fr.i, ted-fr.i) | i=1;n)      = list-of-for-par.fpd-r 
(ide-av.i | i=1;k)         = apd-v   
(ide-ar.i | i=1;n)         = apd-r   
(ct-obn, ct-dep, ct-ota, ct-sft, ‘OK’))  = ct-sto                call-time store 

(dt-cle, dt-pre, dt-cov)      = dt-env         declaration-time environment 
ct-obn.ide-av.i = ? ➔ ct-sto ◄ ‘actual val. parameter not declared’          for i = 1;k 

 ct-obn.ide-ar.i  = ?  ➔ ct-sto ◄ ‘actual ref. parameter not declared’          for i = 1;n 
 let 

ref-av.i = ct-obn.ide-av.i for i=1;k   the references of actual value-parameters 
ref-ar.i = ct-obn.ide-ar.i  for i=1;n   the references of actual reference-parameters 

 ct-dep.ref-av.i = ?  ➔ ct-sto ◄ ‘actual val. parameter not initialized’51       for i = 1;k 
let 

  val-av.i             = ct-dep.ref-av.i          for i = 1;k 

  (dat-av.i, typ-av.i)         = val-av.i            for i = 1;k 
(tok-av.i, (typ-rav.i, yok-rav.i, ota-av.i)) = ref-av.i            for i = 1;k 

(tok-ar.i, (typ-rar.i, yok-rar.i, ota-ar.i))  = ref-ar.i            for i = 1;n 
3. computing the types of formal parameters 

let 
de-typ-fv.i = ted-fv.i.(dt-env, ct-sto)   declared types of formal value-parameter s  for i = 1;k 

  de-typ-fr.i = ted-fr.i.(dt-env, ct-sto)  declared types of formal reference-parameters   for i = 1;n 
de-typ-fv.i  : Error   ➔ ct-sto ◄ d-typ-fv.i                for i = 1;k 
de-typ-fr.i  : Error   ➔ ct-sto ◄ de-typ-fr.i               for i = 1;n 

4. creating twins of formal value-parameters 

let 
sft-0             = ct-sft 
snt-0            = { } 
dep-0           = ct-dep 
(twin-val-av.1, dep-1, snt-1, sft-1)  = create-twin.(val-av.i, dep-0, snt-0, sft-0)  
. . . 
(twin-val-av.k, dep-k, snt-k, sft-k) = create-twin.(val-av.i, dep-(k-1), snt-(k-1), sft-(k-1)) 

5. creating references for formal value-parameters 

let 
((tok-fv.1,…,tok-fv.k), snt, new-sft) = get-new-tok.(k, { }, sft-k)52 

new-ref-fv.i         = (tok-fv.i, (de-typ-fv.i, yok-av.i, ota-av.i))     for i = 1;k 
6. checking type acceptance of: 

 actual value-parameters accepted by formal value-parameters 

 not de-typ-fv.i TTA.dt-cov typ-av.i ➔ sta ◄ ‘value parameters not compatible’    for i = 1;k 

 

51 Mathematically we could have assumed that not initialized value parameters are allowed, but such parameters would 
have not too much of a practical sense, since they would act as local variables. If, therefore, a not initialized parameter 
is passed to a procedure call, we may have a justified supposition that it is a programmer’s mistake, rather than an 
intention. Consequently we signalize an error. The situation with reference parameters is, of course, different.  

52 In this place we use the function get-new-tok to generate tokens for the future reference of formal value parameters. 
In this context we do not need to monitor a set of new tokens but our function must be given such a set as an argument. 
Since it can be an arbitrary set, we choose the empty set { } to play this role.   
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   actual reference-parameters accepted by formal reference-parameters 

 not de-typ-fr.i TTA.dt-cov typ-rar.i ➔ sta ◄ ‘reference parameters not compatible’    for i = 1;n 
7. creating a local initial objecton of the store 

let 
li-obn-fv = [ide-fv.1/new-ref-fv.1,…,ide-fv.k/new-ref-fv.k]    the binding of formal val-param. 

li-obn-fr  = [ide-fr.1/ref-ar.1,…,ide-fr.n/ref-ar.n]   the binding of formal reference-parameters 

li-obn  = li-obn-fv ⧫ li-obn-fr                    local initial objecton 

8. creating a local initial object deposit 

li-dep = dep-k[new-ref-fv.1/twin-val-av.1,…,new-ref-fv.k/twin-val-av.k]  bind. twins to new ref. 

9. creating a local initial store 

li-sto = (li-obn, li-dep, cl-ide, new-sft, ‘OK’) 
10. creating a local initial state 

li-sta = (dt-env, li-sto) 
true       ➔ li-sta 

Function pass-actual performs the following steps: 

1. checks the static compatibility of actual with formal parameters, 

2. identifies/computes:  

a. the identifiers of actual and formal parameters, 

b. the references of actual parameters; if they are not declared, then an error is signalized, 

c. the values of actual-value parameters; if they are not initialized, then an error is signalized; note 

that actual reference parameters need not be initialized, 

3. computes the types of formal parameters; these types are computed in a state carrying a declaration-

time environment, but the types declared in this environment (in its classes) are the same as the types 

in the call-time environment53, 

4. creates twin values for formal value-parameters; for not-object values twins are just these values, 

whereas the twins of object differ from the source objects only in internal tokens (rule 7. in Sec. 5.4.3), 

5. creates new references for formal value-parameters; they get fresh tokens, declared types of formal 

parameters, and the yokes and origins of actual parameters,  

6. checks the acceptance for declaration-time covering relation of: 

a. types typ-av.i of the values of actual value-parameters by the declared types de-typ-fv.i of 

corresponding formal parameters, 

b. types typ-rar.i  of the references of actual reference-parameters by the declared types de-typ-
fr.i of corresponding formal parameters, 

7. creates a local initial objecton by assigning created references to formal value-parameters, and the (old) 

references of actual reference-parameters to formal reference-parameters; the actual values are accepted 

by the new references, because they differ from the “old” references by tokens only, 

8. creates a local initial deposit as an extension of the call-time deposit by new references bound to the 

values of actual value-parameters; note that all “old” references of actual value parameters remain 

bounded in the new deposit, but now they are orphan references, which means that we can’t access 

them from the local state,  

9. creates a local initial store with new objecton, new deposit, new set of free tokens, and cl-ide (the name 

of the hosting class) as its origin tag (rule 6 in Sec. 5.4.3), 

10. creates a local initial state by putting together the declaration-time environment with the local initial 

store. 

Two remarks are necessary about the required compatibility between the profiles of actual and formal 

parameters: 

• In the case of value parameters, the references of formal parameters ref-fv’s are created by the passing 

parameters mechanism (PPM) in such a way that the declared types of parameters become the types of 

these references. Then PPM assigns to these references the values of actual parameters, and therefore 

 

53 It is the consequence of our assumption of Sec. 6.3 that all class declarations precede in programs all instructions.  
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the types of these values — which may be different from the declared types — must be acceptable by 

the latter.  

• In the case of reference parameters the situation is different. Now, PPM assigns the references of actual 

parameters ref-ar’s to formal parameters ide-fr’s. Then we only request that the types of ref-ar’s are 

accepted by the declared types. However, since TTA.cov is, by definition, transitive, also now declared 

types will accept the types of actual values. 

Notice that the described mechanism of creating local initial stores does not offer a possibility of using global 

variables/attributes, i.e. variables/attributes visible both outside and inside procedure-bodies. All “external 

interventions” of a procedure call must be realized by reference parameters, and therefore, must be explicitly 

declared. In our opinion such a solution contributes to the clarity of programs, and also simplifies construction 

rules of correct programs with procedure calls (cf. Sec. 9.4.6.3).  

6.6.3.5 Returning the references of reference parameters 

By the end of the execution of a procedure call we reach a local terminal state that consists of: 

• a local terminal store, where the objecton binds formal parameters and possibly some local variables 

declared in the body of the procedure, 

• a local terminal environment, where possibly new local classes, pre-procedures and procedures have 

been declared, and/or the covering relation has been augmented by new pairs of types.  

 

Fig. 6.6.3-3 Returning references to actual reference-parameters of a procedure 

Next, the exiting mechanism builds a global terminal state (Fig. 6.6.3-1) consisting of a call-time environment 

— all locally declared classes and procedures, and new pairs of types in covering relation cease to exist — 

and a global terminal store where actual reference parameters regain their call-time references. This store 

consists of  (Fig. 6.6.3-3): 

• global call-time objecton —  where all global variables, including actual parameters, “regain 

visibility”, and all formal parameters and local variables cease to 

exist; actual reference-parameters point (back) to their call-time 

references,  

• local terminal deposit — this deposit is passed unchanged to the global store, but the 

(created by the call) references of formal value-parameters and 

of local variables become orphan references; for the sake of 

simplicity we do not introduce a garbage-collection mechanism, 
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• global call-time origin tag of 

the store 

— note that the call-time origin tag may be: (1) either public-

visibility origin tag $, or (2) a class name; case (2) will happen, 

if our procedure was locally declared and called in the body of 

another procedure, 

• local terminal set of used 

references 

— since we do not introduce a garbage collection mechanism, no 

formerly used tokes are released  (simplification of the model). 

Before we formalize the mechanism of returning reference parameters, we introduce an auxiliary (meta) 

predicate to be used at the exit of the procedure call in checking, if in the local terminal state: 

A. all formal reference parameters are initialized (explanation below),  

B. their values are acceptable by their references in the context of the call-time covering relation.  

Of course, B. is a necessary condition for the global terminal store to be well-formed. As was already 

mentioned, condition B. may be unsatisfied, if the following situation takes place: 

a. ide → (tok, (r-typ, yok, ota)) → (dat, v-typ)  and 

b. (r-typ, v-typ) : lt-cov           but  

c. (r-typ, v-typ) /: ct-cov 

Note that case c. may happen if the local covering relation has been (locally) enriched by the pair (r-typ, v-
typ). 

Parameters (identifiers) which satisfy A. and B. will be called adequate in a given state. This property is 

formalized by the following predicate-like function: 

adequate : Identifier ⟼ WfState ⟼ {tt, ff} | Error 
adequate.ide.sta = 
 is-error.sta    ➔ error.sta 
 let 
  ((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta 
 obn.ide    = ? ➔ ‘parameter not declared’ 
 dep.(obn.ide)  = ? ➔ ‘parameter not initialized’ 
 let 
  ref = obn.ide 
  val = dep.ref 
 ref VRA.cov val  ➔ tt 
 true       ➔ ff 

Having this function we can describe the mechanism of returning formal parameters: 

return-formal : ForParDen ⟼ Store ⟼ Store ⟼ Env ⟼ Store 
return-formal.fpd-r.ct-sto.lt-sto.dt-env = 

is-error.lt-sto           ➔ lt-sto 
 let 

(ct-obn, ct-dep, ct-ota, ct-sft, ‘OK’) = ct-sto 
(lt-obn, lt-dep, lt-ota, lt-sft, ‘OK’)  = lt-sto 
(ide-fr.i | i=1;n)         = list-of-ide.(list-of-for-par.fpd-r) 

 adequate.(ide-fr.i).(dt-env, lt-sto) : Error ➔ ct-sto◄ adequate.(ide-fr.i).(dt-env, lt-sto) for i = 1;n 
adequate.(ide-fr.i).(dt-env, lt-sto) = ff  ➔ ct-sto◄ ‘ide-fr.i not adequate’      for i = 1;n 
true              ➔ (ct-obn, lt-dep, lt-sft, ct-ota, ‘OK’)     for i = 1;n 

The output store is a combination of: 

• call-time objecton, and call-time origin tag, 

• local-terminal deposit, and local-terminal set of free tokens. 

Two facts are to be emphasized: 
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1. We do not allow a returned reference parameter to be not initialized condition A.). Note that this could 

have happened since we allow passing noninitialized actual reference parameters to formal parameters 

(cf. Sec. 6.6.3.4). However, whereas not initialized reference parameters at the entrance of a procedure 

call make sense, if the same happens at the exit, such parameters turn out to be useless. Since it is 

rational to expect that a programmer may introduce useless parameters only by mistake, we make an 

engineering decision to signalize an error whenever such a situation happens. 

2. It could have happened that the value of a formal reference parameter ide-fr.i is of a type which was 

accepted by its reference for local covering relation, but is not accepted for global (call-time) relation. 

In such a case an error message should be generated. To do so, we use function adequate.  

In point 2. we may see a problem, since formally this function gets a declaration-time environment (cf. Sec. 

6.6.3.2), hence also a declaration-time covering relation dt-cov, and what we intend to do, is to check the 

adequacy for call-time covering relation ct-cov. Note, however, that by assumption made in Sec. 6.3, if a 

procedure is called prior to open procedures, then its call will abort, since our procedure is “not yet 

declared”, and therefore we do not need “to care” about covering relation. On the other hand, if procedure is 

called after open procedures, then we have the equality ct-cov = dt-cov, since no declaration may appear 

after open procedure.  

6.6.3.6 Calling an imperative procedure 

The calls of imperative procedures are atomic instructions. Their mechanism is described by the following 

constructor: 

call-imp-pro : Identifier x Identifier x ActParDen x ActParDen ⟼ InsDen 
call-imp-pro : Identifier x Identifier x ActParDen x ActParDen ⟼ WfState ⟶ WfState 
call-imp-pro.(cl-ide, pr-ide, apd-v, apd-r).ct-sta =  
 is-error.ct-sta        ➔ ct-sta 
 let 
  (ct-env, ct-sto) = ct-sta                       call-time state 
  (ct-cle, ct-pre)   = ct-env 

ct-pre.(cl-ide, pr-ide) = ?   ➔ ct-sta ◄ ‘procedure-unknown’ 
 ct-pre.(cl-ide, pr-ide) /: ImpPro ➔ ct-sta ◄ ‘imperative-procedure-expected’ 
 let 
  ipr = ct-pre.(cl-ide, pr-ide) 
 ipr.(apd-v, apd-r).ct-sto = ?  ➔ ? 
 let 
  gt-sto = ipr.(apd-v, apd-r).ct-sto               global terminal store 

 true            ➔ (ct-env, gt-sto)  

To call a procedure, we first seek it in the procedure environment of a state (cf. Sec. 6.6.1), and then we apply 

it to the current (i.e. call-time) store. We recall that the terminal store may be the call-time store with an error 

(cf. Sec. 6.6.3.2).  

6.6.4 Functional pre-procedures 

6.6.4.1 Creating functional pre-procedures 

Similarly to imperative pre-procedures, and for the same reason, we build functional pre-procedures. This 

process is formalized in the following definition: 

create-fun-pre-pro : FunProSigDen x ProDen x ValExpDen x Identifier ⟼ FunPrePro 
create-fun-pre-pro : FunProSigDen x ProDen x ValExpDen x Identifier ⟼        
                     ⟼ Env ⟼ ActParDen ⟼ Store → ValueE 
create-fun-pre-pro.(fps,  prd, ved, cl-ide).dt-env.apd.ct-sto =      dt- creation time, ct- call time 

 is-error.ct-sto      ➔ error.ct-sto 
 let 
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(ct-obn, ct-dep, ct-sft, ct-ota, 'OK') = ct-sto 
(fpd, ted)          = fps            functional-procedure signature 

li-sto = pass-actual.(fpd, (), apd, (), cl-ide ).dt-env.ct-sto         local initial store 
is-error.li-sto      ➔ error.li-sto  
let 
 li-sta  = (dt-env, li-sto)                     local initial state 

ex-typ  = ted.li-sta                the expected type of the returned value 

ex-typ : Error      ➔ ex-typ 
(prd ● ved).li-sta= ?   ➔ ? 
(prd ● ved).li-sta : Error  ➔ (prd ● ved).li-sta 

 let 
(cor, typ) = (prd ● ved).sta-li                   lt- local terminal 

 not ex-typ TTA.ct-cov typ ➔ ‘types-incompatible’ 
 true         ➔ (cor, ex-typ) 

This constructor is defined analogously to the corresponding constructor of imperative pre-procedures. The 

execution of its body consist in the evaluation of the argument value-expression ved in an output state of the 

argument program prd. In this way we get an intermediate value (cor, typ), but the value finally returned by 

the procedure is (cor, ex-typ), where ex-typ is the type expected by the procedure.  

Note that we can’t issue simply (cor, typ), because, if typ has been locally declared, it will not be seen in 

the global environment. Of course, before we output (cor, ex-typ) we have to check if its type accepts typ.  

6.6.4.2 Calling functional procedures 

The constructor corresponding to the calls of deep functional procedures is the following: 

call-fun-pro : Identifier x Identifier x ActParDen  ⟼ValExpDen 
call-fun-pro : Identifier x Identifier x ActParDen  ⟼ WfState ⟶ Value | Error 
call-fun-pro.(cl-ide, pr-ide, apd).ct-sta =                          ct- call time 

 is-error.ct-sta       ➔ ct-sta 
 let 
  ((cle, pre, cov), ct-sto) = ct-sta 
 pre.(cl-ide, pr-ide) = ?   ➔ ‘procedure-unknown’ 
 pre.(cl-ide, pr-ide) /: FunPro ➔ ‘functional-procedure-expected’ 
 let 
  fpr = pre.(cl-ide, pr-ide) 
 fpr.apd.ct-sto = ?     ➔ ? 
 true           ➔ fpr.apd.ct-sto 

The called procedure is selected from the procedure environment, and then it is applied to the (call-time) store 

of the current state. If this application terminates successfully, then the outputted value becomes the output of 

the call. Note that fpr.apd.ct-sto may be an error.  

6.6.5 Object pre-constructors 

6.6.5.1 Object constructors versus imperative procedures 

Similarly as in many OO languages, objects are created in our model exclusively by dedicated imperative 

procedures called object constructors. For a class MyClass named ‘MyClass’ an object constructor 

associated with this class (declared in this class) is a function that given a list of actual parameters, and the 

name ide of the future object, returns a store-to-store function that performs three major steps: 

1. it creates an object of a class MyClass whose objecton is a twin of the objecton of MyClass, and whose 

type is ‘MyClass’, 
2. it (optionally) modifies the current deposit, by changing the values assigned to the attributes of the new 

object; to do this it uses a program, 
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3. it assigns new object to the reference of ide in the deposit of the current store; the objecton of the new 

object is a sibling of the objecton of MyClass. 

Since we do not want object constructors to have side effects (an engineering decision), we assume that they 

get only value parameters.   

oco : ObjCon = ActParDen x Identifier ⟼  Store → Store 

Since object constructors are regarded as procedures, by an analogy to pre-procedures, we introduce object 

pre-constructors with the following domain: 

opc : ObjPreCon = Env ⟼ ObjCon  

As we see, although the calls of object constructors are instructions, like the calls of imperative procedures, 

object constructors themselves are different from imperative procedures.  

6.6.5.2 Creating an object pre-constructor 

The creator of object pre-constructors given formal parameter denotations, a name of a class and a program 

denotation, returns an object pre-constructor. The latter given an environment returns an object constructor, 

that given the denotations of actual value parameters, an a name of the future object, and a (call time) store, 

returns a new store where the object name points to a new object of the type of the given class. The objecton 

of the created object is a sibling of the objecton of the involved class.  

create-obj-pre-con : ObjConSigDen x ProDen ⟼ ObjPreCon 
create-obj-pre-con : ForParDen x Identifier x ProDen ⟼   
                  ⟼ Env ⟼ ActParDen x Identifier ⟼  Store → Store 
create-obj-pre-con.((fpd, cl-ide), prd).dt-env.(apd, ob-ide,).ct-sto =       cl-ide class identifier 
 is-error.ct-sto        ➔ ct-sto              ob-ide object identifier 

1. parent class is identified  

 let                 

  (dt-cle, dt-pre, dt-cov)      = dt-env          declaration-time environment 

(ct-obn, ct-dep, ct-ota, ct-sft, 'OK') = ct-sto                 call-time store 

dt-cle.cl-ide  = ?     ➔ ct-sto ◄ ‘parent class not declared’  
ct-obn.ob-ide  = ?     ➔ ct-sto ◄ ‘object-identifier must be declared’ 
ct-dep.(ct-obn.ob-ide) = !   ➔ ct-sto ◄ ‘object-identifier must not be initialized’ 

2. future reference of the constructed object is identified 

 let 
(tok, (typ, yok, ob-ota))  = ct-obn.ob-ide         future reference of the constructed object 

(ide, tye, mee, cl-obn) = dt-cle.cl-ide           parent class of the future object 

not typ TTA.ct-cov cl-ide   ➔ ‘types not compatible’ 

3. formal-parameter store is created 

 let 
  fp-sto = pass-actual.(fpd, (), apd, (), cl-ide).dt-env.ct-sto       formal-parameter store 

 is-error.fp-sto       ➔ ct-sto ◄ error.fp-sto 
 let 
  (fp-obn, fp-dep, cl-ide, fp-sft, ‘OK’) = fp-sto 
 dom.cl-obn ∩ dom.fp-obn ≠ {} ➔ ct-sto ◄ ‘a clash between parameters and attributes’ 

4. local initial state is created 

 let    
  (tw-obn, li-sft) = create-twin.(cl-obn, fp-sft)             tw-obn twin objecton 

  li-obn    = fp-obn ♦ tw-obn 
li-sto     = (li-obn, fp-dep, cl-ide, li-sft, ‘OK’) 
li-sta     = (dt-env, li-sto)                 local-initial state 
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 prd.li-sta = ?        ➔ ? 

5. local initial state is transformed into a local terminal state 

let    
lt-sta = prd.li-sta                         local terminal state 

 is-error.lt-sta        ➔ ct-sto ◄ error.lt-sta 

6. resulting object and terminal global store are created 

let 
  (lt-env, (lt-obn, lt-dep, lt-ota, lt-sft, 'OK')) = lt-sta 

re-obn  = truncate.(lt-obn, dom.cl-obn)        resulting objecton 

 re-obj = (re-obn, cl-ide)          resulting object 

  ob-ref = ct-obn.ob-ide           future reference of the resulting object 

  tg-dep = ct-dep[ob-ref/re-obj]          terminal global deposit 

true           ➔ (ct-obn, tg-dep, ct-ota, lt-sft, 'OK')  

Similarly to the former creators also this one builds a pre-constructor, that given a declaration-time 

environment returns a class constructor. The latter, given a call-time store returns this store with a resulting 

object bound in it. The resulting object is derived from the objecton of an indicated class, which is built into 

the pre-constructor. This action is performed in the following ten steps (we skip commenting errors): 

1. A parent class indicated by its name cl-ide is identified.  

2. The future reference of the new object is identified. It is the reference of the predeclared object variable 

ob-ide. The type of this reference must be compatible with the type of the created object, i.e. with cl-ide. 

3. We create a formal-parameter store fp-sto, where only formal value parameters are bound in the objecton. 

The reference parameters are not involve, and the created store binds only formal value parameters. 

4. The creation of a local initial state: 

4.1. We create a twin objecton tw-obn of the objecton cl-obn of the parent class.  

4.2. We create a local initial objecton li-obn by combining (overwriting) the twin objecton with the 

objecton of the formal-parameter store. The only attributes of this objecton are formal parameters and 

the attributes of the twin objecton. Note that these two sets of identifiers must be disjoint.  

4.3. We create a local initial store by combining the declaration-time environment with the local initial 

store. Note that the origin tag of this store is cl-ide. 

4.4. Local initial state li-sta is composed of the declaration-time environment, and the local initial store 

5. The local initial state is transformed by the program prd to a local-terminal state lt-sta.  

6. The creation of the resulting object and terminal global store 

6.1. The local terminal objecton is truncated to the attributes of the objecton of the class cl-obn thus giving 

a resulting objecton re-obn. This objecton is then used to create the resulting object re-obj by adding 

to it its type cl-ide. 

6.2. A terminal global deposit of the store is created by binding the created object to its reference ob-ref. 

Note that the compatibility of the types of ob-ide and re-obj has been checked in point 2.  

6.3. A terminal global deposit tg-dep is created by assigning the created object to ob-ide in the call-time 

deposit.  

6.4. The terminal global store includes the call-time objecton, the new deposit, the call-time covering 

relation (an engineering decision), a call-time origin tag, and a local terminal set of free tokens.  

Returning to our example of an object constructor ConstructObject of Sec. 5.1, the program involved in the 

creation of a new object by this constructor consists of a pair of assignment statements: 

no  := number + 1; 
next  := node 
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where no and next are object’s attributes, and number an node are formal parameters. 

6.6.5.3 Calling object constructors 

Calls of object constructors are instructions that create new objects and assign them to predeclared variables.  

The constructor of such calls takes a name of a class cl-ide where the a constructor has been declared, the 

name co-ide of this constructor, an identifier ob-ide to which the new object will be assigned, a list of actual 

value parameters, and returns an instruction denotation: 

call-obj-con : Identifier x Identifier x Identifier x ActParDen ⟼ InsDen 
call-obj-con : Identifier x Identifier x Identifier x ActParDen ⟼ WfState ⟶ WfState 
call-obj-con.(ob-ide, cl-ide, co-ide, apd-v).sta = 
 is-error.ct-sta         ➔ ct-ct-sta 
 let 
  ((ct-cle, ct-pre), ct-sto) = ct-sta                    call-time state 

ct-pre.(cl-ide, co-ide) = ?    ➔ ct-sta ◄ ‘constructor unknown’ 
 ct-pre.(cl-ide, co-ide) /: ObjCon  ➔ ct-sta ◄ ‘object constructor expected’ 
 let 
  oco = ct-pre.(cl-ide, co-ide) 
 oco.(apd-v, ob-ide).ct-sto = ?   ➔ ? 
 let 
  new-sto = oco.(apd-v, ob-ide).ct-sto 

 true             ➔ (ct-env, new-sto)  

The instructions of object-constructor-calls may be said to be “hybrid instruction”, since they are half 

instructions and half declarations. They are half declarations because they declare new object variables. 

However, structurally they have been included into the domain of instruction, to allow them to be iterated.  

6.7 Declarations 

6.7.1 An overview of declarations 

Declarations in our model may act at two different levels: 

1. at the level of states  

a. they assign references, classes and procedures to identifiers,  

b. they modify covering relations, 

2. at the level of classes  

a. they assign references, pre-procedures and types to identifiers, 

b. they assign values to references in deposits. 

The assignment of a reference to an identifier is usually referred to as a variable or an attribute declaration.  

The declarations of classes will be executed in two steps: 

• the choice of a parent class which may be either empty or previously declared, 

• the removal from this class of all object pre-constructors (an engineering decision54) and an enrichment 

of the resulting class by new items with the help of class transformers. 

At the stage of class transformations we may: 

• add abstract items, 

• concretize abstract items, i.e. replace abstract items by corresponding concrete ones, 

 

54 It is usual in the existing programming languages that object constructors are not inherited by children classes from 
their parent classes. This rule seems rather obvious — when we create an object of a class, we use an object 
constructor of that class.  
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• add concrete items. 

When we create a new class in a state, we modify the class environment of this state, and additionally, if we 

declare a concrete attribute in this class, or if we concretize an abstract attribute, then we modify also the store 

of the state by modifying its deposit.  

Class transformations are performed by class transformers (Sec. 6.7.4) that modify classes stored in class 

environments of states. However, the fact that we have class transformers in our language does not mean that 

we can modify declared classes. As we are going to see, class transformers will be used exclusively within 

class declarations, which means that classes once declared, will never be changed.  

As we have assumed in Sec. 6.3, all declaration in our programs will syntactically precede all instructions.  

This rule concerns in particular covering relations, and, in fact, this is why we include them in the category of 

declarations rather than instructions. The second reason of this decision is that the modifications of covering 

relations will be restricted to their enrichments by new pairs of types. All these decisions do not affect the 

functionality of our programs, but significantly simplify the rules of building correct programs (Sec. 9.4). In 

this way we realize the Second Principle of Simplicity formulated in Sec. 3.3. 

Now, consider the following example of a class declaration written in an anticipated concrete syntax of our 

language (Sec. 7.3): 

class MyClass: 
 par HisClass by:  
  let age be integer and private tel;  
  set worker as HisClass.employee and private tes ;  
  proc promote(val cfp ref cfp) prc corp 
ssalc 

This declaration enriches incrementally a previously declared parent class HisClass, by one private integer 

attribute age, one type constant worker, whose declaration refers to a class constant of the parent class, and one 

imperative procedure (concrete method).  

Since the declarations of types and pre-procedures will be hidden in class transformers, formally we are 

going to have five categories of atomic declarations with the following constructors: 

var-dec    : ListOfIde x TypExpDen    ⟼ DecDen                variable declarations 

enrich-cov-rel : TypExpDen x TypExpDen     ⟼ DecDen             enrichments of cov. rel. 

cla-dec     : Identifier x ClaInd x ClaTraDen ⟼ DecDen                class declarations 

pro-open   :              ⟼ DecDen             procedure opening 

skip-dec   :              ⟼ DecDen            trivial declaration 

Since declarations can be composed sequentially, we introduce also a corresponding constructor: 

compose-dec : DecDen x DecDen ⟼ DecDen 

We omit obvious definition of the last constructor. 

Once all classes have been declared in a program, we perform a one-step operation called the opening of 

procedures (Sec. 6.7.6) that creates procedures, functions and object constructors out of the corresponding 

pre-procedures, pre-functions and object pre-constructors respectively, and then assigns them to their names 

in the procedure environment of the current state.  

6.7.2 Declarations of variables 

Our variable declarations declare list of variables of a common type. For the sake of simplicity we assume 

that variable declarations do not initialize variables. They only assign references to identifiers. The 

initialization of variables must be done by assignment instructions (Sec. 6.5). The definition of our constructor 

is following (we recall that yoke-expression denotations are just yokes; cf. Sec. 6.5.2): 

var-dec : ListOfIde x TypExpDen x YokExpDen ⟼ DecDen     i.e. 

var-dec : ListOfIde x TypExpDen x YokExpDen ⟼ WfState ⟼ WfState 
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var-dec.(loi, ted, yok, pst).sta =  
 is-error.sta          ➔ sta 
 loi = ()           ➔ sta ◄ ‘empty list of variables can’t be declared’ 
 let 
  ((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta 

(ide-1,…,ide-n)           = loi 
 ted.sta : Error        ➔ sta ◄ ted.sta 

declared.ide-i.sta       ➔ sta ◄ ‘identifier declared’   for i = 1;n 
 let 

de-typ         = ted.sta               declared type 
 (tok-1, sft-1)       = get-tok.sft 
 (tok-i, sft-i))       = get-tok.sft(i-1)         for i = 2;n 
 ref-i          = (tok-i, (de-typ, yok, $)) 
de-typ : ObjTyp and cle.de-typ = ? ➔ ‘class unknown’ 
true          ➔ ((cle, pre, cov), (obn[ide-i/ref-i | i = 1;n], dep, ota, sft-n, ‘OK’)) 

Note that if we declare an object variable, we check if the corresponding type is a declared name of a class. 

This rule is in contrast to the case where we add an abstract object-attribute to a class. In that case, as we are 

going to see in Sec. 6.7.4.2, we shall allow that the type of an attribute, i.e. the name of a corresponding class, 

may be not (yet) declared. Such a solution is necessary to allow anticipatory referencing in classes. 

Another fact to be noted is that variables are always public (an engineering decision), which means that 

their origin tags are equal to $. 

6.7.3 Declarations of classes — a basic constructor 

As has been already said, classes are declared in three steps: 

1. In the first step we identify an initial parent class which is either an empty class or an earlier declared 

one. 

2. In the second step we generate a funding class. If parent class was empty then the funding class is just 

this empty class. Otherwise we take a declared earlier parent class and remove from it all types, pre-

procedures and object pre-constructors (an engineering decision). We also replace its name by a new 

one. What is inherited by funding class from parent class are, therefore, its attribute and signatures55. 

Note, however, that the inheritance of attributes means also the inheritance of their references, and 

therefore also values assigned to them in the deposit. On the other hand, as we are going to see later, 

the initial values of attributes may be changed at later stages of the declaration execution. 

3. In the third step, we apply a class transformer (Sec. 6.7.4) to enrich funding class by new attributes, 

types,  procedure signatures and pre-procedures. 

We recall (Sec. 6.1) that the domain of class-transformer denotations is the following:  

ctd : ClaTraDen = Identifier ⟼ WfState → WfState. 

Here some methodological remark are in order to explain why class transformers modify states rather than 

classes, and why they take an identifier as an argument? 

In an earlier version of our model class transformers were functions transforming classes and states, rather 

than classes “in states”: 

ClaTraDen = (Class x WfState) → (Class x WfState) 

 

55 In typical programming languages (??? Janusza prosimy o przykłady) funding class inherits from parent class all items 
except object pre-constructors. However, since in our model we have assumed (cf. Sec. 5.1) that types and procedures 
are public, we may access them independently of the class where they have been declared. Making their copies under 
different would not have much o a practical sense.  
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The modification of states by class transformers is necessary to describe the initialization of class attributes, 

whose values are created by the evaluation of value expressions. From a denotational perspective, this model 

worked quite well. Still, as turned out later, it led to technical problems in the definitions of rules for the 

creation of correct class declarations (Sec. 9.4.4.2). This example shows that in designing a programming 

language, we should consider not only the simplicity of its denotational model but also an ease of building 

program-construction rules (cf. Sec. 3.3).  

Once we have assumed that class transformers will not get “input classes” as their arguments, we had to 

indicate these classes in a different way. Class identifiers were an obvious choice to play this role. 

In the end, to define our constructor of class-declaration denotations we shall need an auxiliary function to 

create funding classes from parent classes: 

make-funding-class : ClaInd ⟼ Identifier ⟼ WfState ⟼ Class | Error 
make-funding-class.cli.ide.sta = 
 cli = ‘empty-class’ ➔  (ide, [ ], [ ], [ ]) 
 let 

((cle, pre, cov), sto) = sta 
 cle.cli = ?    ➔ ‘parent class unknown’ 
 let 
  (cl-ide, tye, mee, obn)                = cla.cli       parent class 

  [ide-1/ppr-1,…,ide-n/ppr-n, ide-(n+1)/sig-1,…,ide-(n+k)/sig-k] = mee 
 true ➔      (ide, [ ], [ide-(n+1)/sig-1,…,ide-(n+k)/sig-k], obn 

If the class indicator is ‘empty-class’, then the funding class is an empty class with ide as its internal name. 

Otherwise the funding class in the class indicated by cli and modified by giving it ide as a new name, removing 

all types from its type environment, and removing all pre-procedures from its method environment.  The 

constructor of class-declaration denotations is now the following: 

cla-dec : Identifier x ClaInd x ClaTraDen ⟼ DecDen 
cla-dec : Identifier x ClaInd x ClaTraDen ⟼ WfState ⟼ WfState  
cla-dec .(de-ide, pa-cli, ctd).sta =               de- for “declared”; pa- for “parent” 

 is-error.sta    ➔ sta 
 declared.de-ide.sta ➔ sta ◄ ’identifier already declared’ 

let 
((cle, pre, cov), sto) = sta 

  fu-cla      = make-funding-class.pa-cli.de-ide.sta        funding class 

 fu-cla : Error    ➔ sta ◄ fu-cla 
 let 
  fu-sta = ((cle[de-ide/fu-cla], pre, cov), sto)                funding state 

ctd.de-ide.fu-sta = ? ➔ ? 
 let 

res-sta = ctd.de-ide.fu-sta             resulting state (with an enriched funding class) 
is-error.res-sta   ➔ sta ◄ error.res-sta 
true       ➔ res-sta 

The declaration of a class starts from making a funding class, and assigning it de-ide to class environment in 

an intermediate state called a funding state. This state, hence the funding class in this state, is then modified 

by the argument class transformer ctd. Note that the first argument of ctd is de-cla, i.e., the name of the 

modified class.  

6.7.4 Class transformers 

6.7.4.1 The signatures of constructors 

Classes are transformed by adding to them new attributes, types or methods. Technically we bind new 

identifiers in class objectons, in type environments or in method environments. In all cases we have three 
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options: we can add an abstract item, a concrete item, or we can concretize an abstract item. The last option 

may be used when we build a child of an earlier declared class. Finally, class transformers may be composed 

sequentially.  

The domain of class-transformer denotations has been defined in Sec. 6.7.3. The list of constructors of 

class-transformer denotations, is the following, where abs means “abstract” and con means “concrete”.  

add-abs-att    : Identifier x TypExpDen x PriStat         ⟼ ClaTraDen 
concretize-abs-att  : Identifier x ValExpDen             ⟼ ClaTraDen 

add-con-att    : Identifier x ValExpDen x TypExpDen x PriStat    ⟼ ClaTraDen 

add-abs-typ    : Identifier                  ⟼ ClaTraDen 
concretize-typ   : Identifier x TypExpDen            ⟼ ClaTraDen 

add-con-typ    : Identifier x TypExpDen            ⟼ ClaTraDen 

add-abs-imp-met  : Identifier x ImpProSigDen           ⟼ ClaTraDen 
concretize-imp-met : Identifier x ImpProSigDen x ProDen        ⟼ ClaTraDen 
add-con-imp-met  : Identifier x ImpProSigDen x ProDen         ⟼ ClaTraDen 

add-abs-fun-met  : Identifier x FunProSigDen           ⟼ ClaTraDen 
concretize-fun-met  : Identifier x FunProSigDen x ProDen x ValExpDen  ⟼ ClaTraDen 

add-con-fun-met  : Identifier x FunProSigDen x ProDen x ValExpDen  ⟼ ClaTraDen 

add-abs-obj-met  : Identifier x ObjConSigDen           ⟼ ClaTraDen 
concretize-obj-met  : Identifier x ObjConSigDen x ProDen        ⟼ ClaTraDen 
add-con-obj-met  : Identifier x ObjConSigDen x ProDen        ⟼ ClaTraDen 

compose-cla-tra  : ClaTraDen x ClaTraDen            ⟼ ClaTraDen 

In the following sections, we will show some examples of the definitions of these constructors. Each of these 

constructors will perform three similar steps: 

1. it will identify a class assigned to cl-ide, 

2. it will appropriately modify this class, 

3. it will assign the new class to cl-ide in the class environment of the current state.  

Transformers built by the first fifteen constructors will be called atomic transformers, to contrast them from 

composed transformers built by means of compose-cla-tra.  

6.7.4.2 Adding an abstract attribute to the objecton of a class 

Contrary to variables that are, as a rule, private (Sec. 6.7.2), when we declare a class attribute we have to 

decide about its privateness or publicness. To incorporate the privacy mechanism into the declarations of class 

attributes, we introduce a new domain, and an auxiliary function. The new domain includes two marks 

defining privacy status  

pst : PriStat = {‘private’, ‘public’} 

Adding an abstract attribute to a class consists in adding a new attribute to class objecton. The corresponding 

constructor is similar to the declaration of a variable, except that now we decide about the visibility status of 

the new attribute. The resulting class transformer enriches a class named cl-ide by a new attribute at-ide. 

add-abs-att : Identifier x TypExpDen x YokExpDen x PriStat ⟼ ClaTraDen  i.e. 
add-abs-att : Identifier x TypExpDen x YokExpDen x PriStat ⟼  

⟼ Identifier ⟼ WfState → WfState 
add-abs-att.(at-ide, ted, yok, pst).cl-ide.sta =  
 is-error.sta     ➔ sta 

 declared.at-ide.sta  ➔ sta ◄ ‘attribute already declared’ 
 ted.sta : Error   ➔ sta ◄ ted.sta 

let  
  ((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta 
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 cle.cl-ide      ➔ ‘class unknown’ 
 let 
  (cl-ide, tye, mee, obn) = cle.cl-ide   
  de-typ       = ted.sta              de-typ – declared type 

  (tok, new-sft)  = get-tok.sft 
  ref      = 
   pst = ‘public’ ➔ (tok, (de-typ, yok, $)) 
   pst = ‘private’➔ (tok, (de-typ, yok, cl-ide)) 
  new-cla  = (cl-ide, tye, mee, obn[at-ide/ref]) 
 true       ➔ ((cle[cl-ide/new-cla], pre, cov), (obn, dep, ota, new-sft, 'OK')) 

Observe that in this definition we use the fact that the input state is well-formed, and therefore the internal 

name of a class, here cl-ide, is a component of this class.  

Two more facts are to be noted that make abstract attribute declarations different from the declarations of 

variables (Sec. 6.7.2):  

First, an attribute may be private, in which case its origin tag is equal to the name of the hosting class, 

rather than to $. 

Second, if the declared type de-typ is an object type, in which case it is supposed to be a name of a class, 

we do not check if this is really the case, thus allowing to define abstract object-attributes with an anticipatory 

referencing to a class that hasn’t been declared yet. This situation is illustrated by two examples written in 

Java (Fig. 6.7.4-1), where — additionally — we have to do with a class recursion. 

 

class ListNode{     
    int         no = 2;    
    ListNode  next; 
  … } 
 

class A{ 
  B b; 
  void b(B b){ 
    this.b = b; } } 
class B{ 
  A a = new A(); … } 

Case A: simple recursion Case B: mutual recursion 

Fig. 6.7.4-1 Two examples of recursive anticipatory referencing in Java 

In Case A class ListNode refers recursively to itself, in Case B class A refers to B, and B refers to A. Note that 

if in the second case class B would not refer to class A, then there would be no recursion but still an anticipatory 

referencing will be the case.  

Since classes are regarded as types of objects, a question arises if we should allow anticipatory referencing 

between data types as well. Although such a construction will be discussed in Annex ???, we avoid it here for 

simplicity.   

6.7.4.3 Adding a concrete attribute to a class 

add-con-att : Identifier x ValExpDen x TypExpDen x YokExpDen x PriStat ⟼ ClaTraDen             i.e. 
add-con-att : Identifier x ValExpDen x TypExpDen x YokExpDen x PriStat ⟼  

⟼ Identifier ⟼ WfState → WfState 
add-con-att.(at-ide, ved, ted, yok, pst).cl-ide.sta =  
 is-error.sta     ➔ sta 

 declared.at-ide.sta  ➔ sta ◄ ‘attribute already declared’ 
 ted.sta : Error   ➔ sta ◄ ted.sta 
 ved.sta = ?    ➔ ? 
 ved.sta : Error   ➔ sta ◄ ved.sta 
 let  
  ((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta 
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 cle.cl-ide      ➔ ‘class unknown’ 
 let 
  (cl-ide, tye, mee, obn) = cle.cl-ide   
  de-typ       = ted.sta              de-typ – declared type 

  de-val       = ved.sta  
(tok, new-sft)     = get-tok.sft 

  ref         = 
   pst = ‘public’  ➔ (tok, (de-typ, yok, $)) 
   pst = ‘private’ ➔ (tok, (de-typ, yok, cl-ide)) 
  new-cla  = (cl-ide, tye, mee, obn[at-ide/ref]) 
 true ➔ ((cle[cl-ide/new-cla], pre, cov), (obn, dep[ref/de-val], ota, new-sft, 'OK')) 

6.7.4.4 Concretizing abstract attributes and adding concrete attributes 

Concretizations of an abstract attributes acts as assignments (Sec. 6.5.6) except that the concretized attribute 

must be abstract. In other words, we do not allow for a replacement of a value of an attribute by an new one 

at the stage of a class declaration (an engineering decision). 

Adding a concrete attribute is a simple combination of adding an abstract attribute and concretizing it. We 

skip formal definitions of both constructors.  

6.7.4.5 Adding a type constant to a class 

The case of adding a type constant to a type environment includes three constructors (cf. Sec. 6.7.4.1): adding 

an abstract type, concretizing an abstract type and adding a concrete type. In the first case we add a type 

constant with a pseudotype Θ assigned to it.  

add-abs-typ : Identifier ⟼ ClaTraDen 

add-abs-typ : Identifier ⟼ Identifier ⟼WfState → WfState 
add-abs-typ.ty-ide.cl-ide.sta = 
 is-error.sta    ➔ sta 
 declared.ty-ide.sta  ➔ sta ◄ ‘type name declared in state’ 
 let 
  ((cle, pre, cov), sto) = sta 
 cle.cl-ide = ?    ➔ sta ◄ ‘class unknown’ 
 let 

(cl-ide, tye, mee, obn) = cle.cl-cla 
new-cla       = (cl-ide, tye[ty-ide/Θ], mee, obn) 

 true       ➔ ((cle[cl-ide/new-cla], pre, cov), sto) 

In the second case we concretize an abstract type: 

concretize-typ : Identifier x TypExpDen ⟼ ClaTraDen 
concretize-typ : Identifier x TypExpDen ⟼ Identifier ⟼ WfState → WfState 
concretize-typ.(ty-ide, ted).cl-ide.sta = 
 is-error.sta  ➔ sta 
  let 
   ((cle, pre, cov), sto) = sta 
  cle.cl-ide = ? ➔ sta ◄ ‘class unknown’ 

let 
   (cl-ide, tye, mee, obn) = cle.cl-ide 
 tye.ty-ide = ?  ➔ sta ◄ ‘type name unknown’ 
 tye.ty-ide ≠ Θ ➔ sta ◄ ‘only abstract types may be concretized’ 
 ted.sta : Error ➔ sta ◄ ted.sta 
 let 
  typ    = ted.sta 

new-cla  = (cl-ide, tye[ty-ide/typ], mee, obn) 



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       126 

 

 typ /: ObjTyp  ➔ ((cle[cl-ide/new-cla], pre, cov), sto) 
 cle.typ = ?   ➔ sta ◄ ‘object type unknown’ 
 true     ➔ ((cle[cl-ide/new-cla], pre, cov), sto) 

The following two conditions must be satisfied to concretize a type constant ty-ide: 

1. ty-ide must be declared as an abstract type constant; i.e., we can’t change a type assigned to a concrete 

type constant, nor we can concretize a not declared constant, 

2. if the type to be assigned to ty-ide is an object type, it must be the name of a declared class 

The last case is analogous.  

6.7.4.6 Adding a method constant to a class 

In a method environment of a class we can bind three categories of pre-procedures — imperative and 

functional pre-procedures, and object pre-constructors — and three corresponding categories of signatures. 

We can also concretize abstract methods by completing signatures to pre-procedures. Since all the 

corresponding definitions are quite simple and analogous to each other, we show only three examples of such 

constructors. We start from introducing an auxiliary function: 

get-parameters : ForParDen ⟼ Sub.Identifier 

which given a (list of) formal parameters returns the set of identifiers included in these parameters. We skip a 

formal definition of this function.  

Our first constructor builds the denotation of  a declaration of an imperative pre-procedure: 

add-con-imp-met : Identifier x ImpProSigDen x ProDen ⟼ ClaTraDen    i.e. 

add-con-imp-met : Identifier x ForParDen x ForParDen x ProDen ⟼  

                     ⟼ Identifier → WfState → WfState 
add-con-imp-met.(pr-ide, fpd-v, fpd-r, prd).cl-ide.sta = 
 is-error.sta     ➔ sta 
 let 
  ((cle, pre, cov), sto) = sta 
  (v-ide-1,…, v-ide-n) = get-parameters.fpd-v 
  (r-ide-1,…, r-ide-k)  = get-parameters.fpd-r 
 cle.cl-ide = ?    ➔ sta ◄ ‘class unknown’ 
 declared.pr-ide.sta ➔ sta ◄ ‘identifier not free’ 
 declared.v-ide-i.sta ➔ sta ◄ ‘identifier not free’  for i = 1;n56 
 declared.r-ide-i.sta ➔ sta ◄ ‘identifier not free’  for i = 1;k 

let 
  (cl-ide, tye, mee, obn) = cle.cl-ide 
 let 
  ipp   = create-imp-pre-pro.(fpd-v, fpd-r, prd, cl-ide) 
  new-cla  = (ide, tye, mee[pr-ide/ipp], obn) 
 true       ➔ ((cle[cl-ide/new-cla], pre, cov), sto) 

The second constructor corresponds to concretizing a previously declared functional method: 

concretize-fun-met : Identifier x FunProSigDen x ProDen x ValExpDen ⟼ ClaTraDen 
concretize-fun-met : Identifier x FunProSigDen x ProDen x ValExpDen ⟼ 
                       ⟼ Identifier → WfState → WfState 
concretize-fun-met.(pr-ide, fps, prd, ved).cl-ide.sta = 
 is-error.sta       ➔ sta 
 let 
  ((cle, pre, cov), sto) = sta 

 

56 Denotationally it is not necessary that formal parameters are free, but we take this assumption since it technically 
simplifies future rules of correct program development (cf. Sec. 9.4.4.2). 
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 cle.cl-ide = ?       ➔ sta ◄ ‘class unknown’ 
let 

  (cl-ide, tye, mee, obn) = cle.cl-ide 
 mee.pr-ide = ?      ➔ sta ◄ ‘method unknown’ 
 mee.pr-ide /: FunProSigDen ➔ sta ◄ 'signature of functional procedure expected' 
 fps ≠ mee.pr-ide     ➔ sta ◄ ‘signatures not compatible’ 
 let 
  fpp   = create-fun-pre-pro.(fps, prd, ved, cl-ide) 
  new-cla  = (cl-ide, tye, mee[pr-ide/fpp], obn) 
 true          ➔ ((cle[cl-ide/new-cla], pre, cov), sto) 

Third constructor corresponds to a declaration of a concrete object constructor.  

add-con-obj-met : Identifier x ObjConSigDen x ProDen ⟼ ClaTraDen 
add-con-obj-met : Identifier x ForParDen x Identifier x ProDen ⟼  
                    ⟼ Identifier → WfState → WfState 
add-con-obj-met.(oc-ide, fpd, cl-ide, prd).cl-ide.sta =            oc- object-constructor 

 is-error.sta    ➔ sta 
 let 
  ((cle, pre, cov), sto) = sta 
 cle.cl-ide = ?    ➔ sta ◄ ‘class unknown’ 

let 
  (cl-ide, tye, mee, obn) = cle.cl-ide 
 declared.oc-ide.sta ➔ ‘identifier not free’ 
 let 
  opc    = create-obj-pre-con.((fpd, cl-ide), prd) 
  new-cla  = (cl-ide, tye, mee[oc-ide/opc], obn) 
 true       ➔ ((cle[cl-ide/new-cla], pre, cov), sto) 

6.7.4.7 Composing transformers sequentially 

The following constructor simply combines the “declaration layers” of transformers sequentially: 

compose-cla-tra : ClaTraDen x ClaTraDen ⟼ ClaTraDen 
compose-cla-tra.(cdt-1, cdt-2).ide = (ctr-1.ide) ● (ctr-2.ide) 

Intuitively speaking a sequential composition of transformers decribes a process of a cumulative creation of a 

class named ide, provided that it is declared in the argument state. In this process a class asigned ot ide (if 

any) is modified to a new class by adding to it some new items. Note that this process is possible only 

“internally” within a class declaration, since this is the only context in which we can use class transformers. 

It can’t be performed “externally” since class transformers do not belong to the category of declarations. 

Consequently, a class once declared, can’t be changed in the future.  

Note also that compose-cla-tra is associative, since ● is associative. 

6.7.5 Enrichments of covering relations 

Our last category of declarations are enrichments of covering relations. Although they refer to types, that are 

“stored” in classes, the enrichments of covering relations do not transform classes, but environments. This is 

an engineering decision which makes covering relations globally accessible.   

enrich-cov : TypExpDen x TypExpDen  ⟼ DecDen      i.e. 

enrich-cov : TypExpDen x TypExpDen  ⟼ WfState ⟼ WfState 
enrich-cov.(ted-1, ted-2).sta = 
 is-error.sta    ➔ sta 
 ted-i.sta : Error   ➔ sta ◄ ted-i                 for i = 1,2 
 let 
  typ-i                = ted-i.sta          for i = 1,2 
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((cle, pre, cov), (obn, dep, ota, sft, ‘OK’)) = sta 
cov-1              = enrich-cov.(cov, typ-1, typ-2) 

 cov-1 : Error    ➔ sta ◄ cov-1 
typ-1, typ-2 /: ObjTyp ➔ ((cle, pre, cov-1), (obn, dep, ota, sft, ‘OK’)) 

 true       ➔  
  let 
   ide-i = typ-i                        for i = 1,2 

  cle.ide-i = ? ➔ ‘object types must point to declared classes’       for i = 1,2 
  true    ➔ ((cle, pre, cov-1), (obn, dep, ota, sft, ‘OK’)) 

We recall that enrich-cov (Sec. 5.4.2) realizes the requirement that if one of the types is an object type, then 

so must be the other. Additionally our constructor checks if object types point to declared classes.  

A word of comment is necessary here to explain why the enrichments of covering relations were included 

in the category of declarations rather than instructions. The reason is to ensure that once program execution 

passes the declaration part of the program (cf. Sec. 6.3), the covering relation won’t be changed. This 

assumption simplifies the future rule of creating correct procedure calls (see Sec. 9.4.6.3). 

6.7.6 The openings of procedures  

As we have assumed in Sec. 6.3 every program in our language is a sequential combination of three 

components:  

1. a declaration, possibly composed, 

2. a single predefined procedures’ opening,  

3. an instruction, also possibly composed 

The assumption 2. means that the domain of procedures’ openings includes only one element 

pod : ProOpeDen  = {open-pro-den} 

where 

open-pro-den : WfState ⟼ WfState, 

and that this element is element is built by a zero-argument constructor 

create-open-pro-den : ⟼ ProOpeDen 

i.e. it is built by language designer, rather than by programmers, as it is the case with declarations and 

instructions. To incorporate opening declarations into our model, we first introduce an auxiliary function 

get-pre-pro : WfState ⟼ (ProIndicator x PrePro)c*               get pre-procedures 

This function given a state ((cle, pre, cov), sto), returns a sequence of all pairs ((cl-ide, pr-ide), prp) where: 

• pr-ide is a name of a pre-procedure declared in a class named cl-ide, 

• prp is the corresponding pre-procedure.  

We skip a formal definition of this function, and we assume that the pairs of identifiers (cl-ide, pr-ide) will 

be called procedure indicators. Now, a half-formal definition of our constructor is the following: 

create-open-pro-den : ⟼ ProOpeDen 
create-open-pro-den : ⟼ WfState ⟼ WfState 
create-open-pro-den .().dt-sta =                     dt-sta declaration-time state 

 is-error.dt-sta    ➔ dt-sta  
 get-pre-pro.dt-sta = () ➔ dt-sta ◄ ‘no procedures to declare’ 
 let 
  ((pri-1, prp-1),…,(pri-n, prp-n))  = get-pre-pro.dt-sta 

((dt-cle, dt-pre, dt-cov), dt-sto) = dt-sta 
  pro-1           = prp-1.(dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n], dt-cov) 
  … 
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  pro-n            = prp-n.(dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n], dt-cov) 
  (dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n]), dt-cov) = ot-env        open-time environment 

 true        ➔ (ot-env, dt-sto) 

This constructor given an empty tuple of arguments returns a state-to-state function open-pro-den. This 

function gets a declaration-time state dt-sta, and generates a tuple of procedures as a least solution of a set of 

fixed-point equations that refer to pre-procedures declared in the classes of dt-sta. These procedures are then 

assigned to the corresponding procedure indicators in the declaration-time environment, thus creating an open-

time environment. This environment together with the declaration-time store, creates an open-time state.  

Note that if we execute a “main program”, i.e., a program which is not a procedure body in a procedure 

call, then the declaration-time procedure environment dt-pre is empty.  

It is worth observing in this place that in our definition we do not build any stack mechanism usually 

engaged associated with recursion by interpreters or compilers. We do not need to do so, since we describe 

the recursion in Lingua using the recursion in MetaSoft.  

Now, let’s try to make the definition of our constructor a little more formal. To do this we first define a 

family of metaconstructors MC[n] indexed by positive integers n: 

MC[n] : (ProIndicator x PreProc)cn x State ⟼ Procedurecn  ⟼ Procedurecn 
MC[n].(((pre-1, prp-1),…,(pri-n, prp-n)), sta).(pro-1,…,pro-n) = 
 let 
  ((cle, pre, cov), sto)  = sta 
    new-pro-1 = prp-1.(dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n]) 
     … 
    new-pro-n = prp-n.(dt-cle, dt-pre[pri-1/pro-1,…, (pri-n/pro-n]) 
 true ➔ (new-pro-1,…,new-pro-n) 

Then by 

LFP : (A ⟼ A) ⟼ A 

we denote a universal function such that if A is a CPO (Sec. 2.4), and if F : A ⟼ A is a continuous function 

in this CPO, then LFP.F is the least fixed point of  F. With these metafunctions we can write our definition 

in the following way: 

create-pro-opening : ⟼ DecDen 

create-pro-opening : ⟼ WfState ⟼ WfState 
create-pro-opening.().dt-sta =                dt-sta a declaration-time state 

 is-error.dt-sta    ➔ dt-sta  
 get-pre-pro.dt-sta = () ➔ dt-sta 
 let 
  ((dt-cle, dt-pre), dt-sto)    = dt-sta 
  ((pri-1, prp-1),…,(pri-n, prp-n))  = get-pre-pro.dt-sta 
  (pro-1,…,pro-n)       = LFP.(MC[n].(((pri-1, prp-1),…,(pri-n, prp-n)) 
 true        ➔ ((dt-cle, dt-pre[pri-1/pro-1,…, pri-n/pro-n]),sto) 

Of course, Procedurecn is a CPO with a componentwise ordering and Procedure is ordered by a set-

theoretical inclusion of functions. It remains to be proved that 

MC[n].(((pri-1, prp-1),…,(pri-n, prp-n)), sta)) 

is a continuous function in Procedurecn.  

For technical reasons we introduce a constructor of a trivial opening, that is an identity function : 

open-skip : ⟼ ProOpeDen. 
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7 SYNTAX AND SEMANTICS 

7.1 An overview of syntax derivation  

The derivation of a syntax in our model starts from the signature SigAlgDen57 of the algebra of denotations 

and proceeds in three steps corresponding to three transformations: 

S2A : SigAlgDen  ⟼ AlgAbsSyn            the creation of an algebra of abstract syntax58 

A2C  : AlgAbsSyn  ⟼ AlgConSyn      the transformation of abstract syntax into concrete syntax 

C2C  : AlgConSyn ⟼ AlgColSyn    the transformation of concrete syntax into colloquial syntax 

Each of these transformations is a many-sorted function, and A2C is (additionally) a homomorphism. We 

build our algebras in such a way that for each of them there exists a corresponding many-sorted function of 

semantics: 

A2D : AlgAbsSyn  ⟼ AlgDen                      abstract semantics 

C2D  : AlgConSyn  ⟼ AlgDen                    concrete semantics 

SEM : AlgColSyn  ⟼ AlgDen                       colloquial semantics 

The first two semantics are homomorphisms, i.e., are denotational semantics, whereas the third one is not. 

Since colloquial syntax will be the ultimate user-syntax of our language, its semantics will be called the 

semantics of  Lingua.  

All syntactic algebras will be described by corresponding equational grammars (Sec. 2.15). These 

grammars explicitly define the carriers of our algebras, and implicitly — i.e., by grammatical clauses — their 

constructors. For instance, the following grammatical equation: 

cre : ConRefExp = 
ref (Identifier)       | 

   ref ConValExp at Identifier fer 

defines the carrier of concrete reference expressions, and each line of this equation below the sign =, called a 

grammatical clause, defines a corresponding constructor of the algebra of concrete syntax: 

con-ref-variable.ide    = ref (ide)  
con-ref-attribute.(cve, ide) = ref cve at ide fer 

Abstract-syntax grammar is always LL(k) (see Sec. 2.16) which makes abstract-syntax programs easily 

parsable59. The derivation of this grammar can be made algorithmic. 

Since abstract syntax is usually awkward to use, in the next step we build an algebra of concrete syntax 

which is, by the rule, a homomorphic image of the abstract-syntax algebra: 

A2C : AlgAbsSyn ⟼ AlgConSyn 

This step is not algorithmic, since here we take major decisions about the future shape of our syntax, and we 

try to make it possibly user friendly. In building concrete syntax, we must ensure that the corresponding 

concrete semantics exists. For this to be the case, A2C must be adequate (Sec. 2.14), which means that it must 

not glue more than A2D. If it is so, the concrete semantics is unique and satisfies the equation 

 

57 This metavariable is not typeset in bold since a signature of an algebra is not an algebra itself.  
58 S2A is read as “signature to abstract”, and the remaining symbols are read analogously.  
59 In fact, abstract syntax scripts may be regarded as linear representations of parsing trees.  
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C2D = A2C-1 ● A2D 

where A2C-1 denotes a chosen inverse of A2C, and corresponds to a parsing step from concrete to abstract 

syntax. Of course, if A2C is not an isomorphism, then there is more than one parsing procedures “reversing” 

A2C, and therefore A2C-1 should be regarded as just one of them.  

Although the majority of grammatical clauses of concrete syntax can be made user-friendly, a few of them 

may require further modifications. As a rule these modifications are not homomorphic, since, if they were, 

they could have been included in A2C. These modifications lead us to a colloquial-syntax grammar, and to 

the corresponding algebra. In this case we make sure that there exists a many-sorted function 

RES : AlgColSyn ⟼ AlgConSyn 

that we call a restoring transformation. It restores colloquial syntax “back to” the concrete one. Now, the 

semantics of our language may be regarded as a composition of two many-sorted functions: 

SEM = RES ● C2D 

This semantics, is no more denotational, since it is not a homomorphism. Still, as we are going to see in Sec. 

7.5.1, it may be said to be “denotational to a large extent”.  

In the following sections we describe equational grammars of our three syntaxes. For the sake of brevity 

we shall not list all clauses of these grammars, but only their typical examples. The used notation has been 

described in Sec. 2.15. The components of our many-sorted functions will be indexed by suffixes indicating 

the corresponding carriers of algebras. E.g. 

A2C.ins : AbsIns ⟼ ConIns 

is a component of A2C that corresponds to instructions.  

7.2 Abstract syntax 

7.2.1 General remarks 

As a rule abstract syntax is a prefixed syntax which means that each syntactic element starts from a prefix that 

is a (not quite formally) Arial Narrow copy of an Arial metaname of the corresponding constructor of 

denotations.  

7.2.2 Identifiers, class indicators and privacy statuses 

In this category we have three grammatical equations (see Sec. 6.2): 

ide : Identifier   = …  
cli  : ClaInd   = empty-class | Identifier 
pst : PriStat  = private | public 

7.2.3 Type expressions 

ate : AbsTypExp =  
ted-create-bo() | ted-create-in.()  …         | 
ted-constant( AbsIdentifier , AbsIdentifier )      | 

   ted-create-li( AbsTypExp )            | 
   … 
   ted-put-to-re( AbsIdentifier , AbsTypExp , AbsTypExp ) | 

ted-create-ot( AbsIdentifier ) 
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7.2.4 Transfer and yoke expressions 

atr : AbsTraExp  = 
ted-pass() | ted-sum-in()        | 
ted-add-in( AbsTraExp , AbsTraExp )  | 
… 
 

ayo : AbsYokExp  = 
   yo-true.()             | 

yok-equal-in( AbsTraExp , AbsTraExp )  | 
yok-less-in( AbsTraExp , AbsTraExp )  | 
… 

7.2.5 Value expressions 

We assume to be given (i.e. somehow defined as parameters of our model) four auxiliary syntactic domains. 

We do not call them “abstract syntactic”, since they will be common for all three syntaxes.  

BooleanSyn  = {true, false} 
IntegerSyn = … 
RealSyn  = … 
TextSyn  = … 

The elements of these domains are symbols or strings of symbols substituting corresponding elements of 

denotational domains. Examples of syntactic representations of integers or reals may be: 432894713984713847 

for an integer or 9874,0951208515584958490 for a real number. The grammatical equation corresponding to 

value expression is the following: 

ave : AbsValExp = 
ved-boo(BooleanSyn)             | 

   ved-int(IntegerSyn)              | 
   ved-rea(RealSyn)              | 
   ved-tex(TextSyn)               | 
   ved-variable(AbsIdentifier)            | 
   ved-attribute(AbsValExp , AbsIdentifier)       | 
   ved-call-fun-pro(AbsIdentifier, AbsIdentifier, ActParAbs)  | 
   ved-divide-rea(AbsValExp , AbsValExp)       | 

ved-equal(AbsValExp , AbsValExp)        | 
ved-or(AbsValExp , AbsValExp)         | 
ved-create-list(AbsValExp)            | 
ved-get-from-rec(AbsValExp , AbsIdentifier)     | 
…    

7.2.6 Reference expressions 

are : AbsRefExp =  
ref-variable(Identifier)       |            a reference of a variable 

   ref-attribute(AbsValExp , AbsIdentifier)            a reference of an object attribute 

7.2.7 Instructions 

ain : AbsIns = 
assign(AbsRefExp , AbsValExp)              | 
enrich(AbsTypExp , AbsTypExp)               | 
call-imp-pro(AbsIdentifier , AbsIdentifier , ActParAbs , ActParAbs)   | 
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call-obj-con(AbsIdentifier , AbsIdentifier , ActParAbs)       | 
skip-ins()                       | 
if(AbsValExp , AbsIns , AbsIns)              | 
if-error(AbsValExp , AbsIns)                | 
while(AbsValExp , AbsIns)                | 
compose-ins(AbsIns , AbsIns) 

7.2.8 Declarations 

ade : AbsDec = 
var-dec(AbsListOfIde , AbsTypExp , AbsYokExp)  | 
enrich-cov-rel(AbsTypExp , AbsTypExp)      | 
cla-dec(AbsIdentifier , AbsClaExp , AbsClaTra)   | 
compose-dec(AbsDec , AbsDec)        | 
skip-dec() 

7.2.9 Openings of procedures 

aop : AbsOpePro = create-open-pro()  

7.2.10 Class transformers 

act : AbsClaTra = 
add-abs-att(AbsIdentifier , AbsTypExp , AbsYokExp, PriStat)    | 
… 
add-con-imp-met(AbsIdentifier , AbsImpProSig , AbsPro)      | 
add-con-fun-met(AbsIdentifier , AbsFunProSig , AbsPro, AbsValExp) | 
add-con-obj-con(AbsIdentifier , AbsObjConSig , AbsPro)      | 
… 

compose-cla-tra(AbsClaTra, AbsClaTra)  

7.2.11 Preambles of programs 

app : AbsProPre = 
   make-ppd-of-dcd(AbsDec)      | 
   make-ppd-of-ind(AbsIns)      | 
   compose(AbsProPre , AbsProPre) 

7.2.12 Programs 

apr : AbsPro = make-prog( AbsProPre , AbsOpePro , AbsIns ) 

7.2.13 Declaration-oriented carriers 

ali : AbsLisOfIde =  
   build-loi(AbsIdentifier)      | 
   add-to-loi(Identifier , ListOfIde) 
 
ads : AbsDecSec = 
   build-dse(AbsLisOfIde , AbsTypExp) 
 
afp : AbsForPar  = 

build-fpd(AbsDecSec)      | 
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add-to-fpd(AbsDecSec , AbsForPar)   
 
aap : AbsActPar = 

build-apd(AbsLisOfIde)  
 

Intuitively the last equation means that abstract actual parameters are just list of identifiers. Set-theoretically 

we could have dropped the category AbsActPar, and use AbsLisOfIde instead, but algebraically we keep it 

formally have the concept of actual parameters in our model.  

7.2.14 Signatures 

ais  : AbsImpProSig  = 

build-ipsd(AbsForPar , AbsForPar)  

afs : AbsFunProSig = 

build-fpsd(AbsForPar , AbsTypExp)  

aos : AbsObjConSig = 

build-ocsd(AbsForPar , AbsIdentifier) 

7.3 Concrete syntax 

7.3.1 General remarks 

In the abstract-to-concrete step, we modify syntax to be more user-friendly but keep its semantics denotational. 

Technically, the modifications of abstract syntax will belong to four categories: 

1. the simplification of prefixes, 

2. the omission of prefixes in keeping parenthesizing,  

3. the modifications from prefix to infix notation, 

4. the omission of parentheses.  

In our case the first three categories are isomorphic-like in the sense that they are unambiguously reversible. 

The fourth group makes the transformation A2C not isomorphic, but still homomorphic. In this case, we go 

only as far with the modifications, as the adequacy of A2C permits (cf. Sec. 2.14). On the other hand, we 

sacrify LL(k)-ness for frendliness.  

7.3.2 Identifiers, class indicators and privacy statuses 

ide : Identifier   = …  
cli  : ClaInd   = empty-class | Identifier 
pst : PriStat  = private | public 

7.3.3 Type expressions 

cte : ConTypExp =  
boolean | integer  …      | 
constant( Identifier , Identifier )  | 

   list-of( ConTypExp )      | 
   … 

In the last clause we have introduced an infix notation.  
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7.3.4 Transfer and yoke expressions 

 

ctr : ConTraExp  = 
pass | sum-in       | 
( ConTraExp + ConTraExp ) | 
… 
 

cyo : ConYokExp  = 
   TT           |  

( ConTraExp = ConTraExp ) | 
 ( ConTraExp < ConTraExp ) | 
… 
 

Note that the resignation of some prefixes makes our grammar not LL(k). At the same time, however, we keep 

parentheses to protect the adequacy of our homomorphism (Sec. 2.14). As we are going to see in Sec. Sec. 7.4 

and 7.5, the omission of parentheses leads to a colloquial syntax, and to a “not quite denotational” semantics.  

In the two first clauses of the last equation we only shorten prefixes, which is an isomorphic-like 

transformation. In the last clause we allow writing myType.MyClass instead of ted-constant(myType, MyClass) 
which is again an isomorphic transformation, although now the proof of this fact may be not trivial. Note that 

a script of the form ide-1.ide-2 may be a type constant or a value expression, and we have to see the context 

of this script to identify which one it is.  

7.3.5 Value expressions 

We assume to be given the same auxiliary domains as in Sec. 7.2.5. The grammatical equation defining 

concrete value expressions is the following: 

cve : ConValExp = 
true | false          | 

   IntegerSyn         | syntactic representations of integers 

   RealSyn          | syntactic representations of reals 

   ‘ TextSyn ‘          | texts are closed in apostrophes 

   Identifier          | variable 
   Identifier . Identifier      | getting an attribute of an object 

   call Identifier.Identifier(ConActPar)  | calling an imperative procedure 

   (ConValExp /. ConValExp)    | real division is a “division with dot  /. 
   (ConValExp = ConValExp)    | equality 

   (ConValExp or ConValExp)   | disjunction  

make list(ConValExp)      | making a one-element list 
   rec ConValExp at Identifier cer  | getting an attribute of a record 
   ConValExp = ConValExp    |    comparing two values (a boolean expression) 

… 

Here we switch from prefix- to infix notation, but we keep the parentheses structures, although the symbols 

of parentheses may change, e.g. from “mathematical” ones like ( and ) to program oriented like obj and jbo. 

An example of a clause of the definition of A2C.cve may be: 

A2C.cve.[ ved-call-fun-pro(aid-c , aid-p , apa) ] =          -c for “class, -p for “procedure” 

call A2C.cid.[aid-c] . A2C.cid.[aid-p] ( A2C.apa.[apa] )   

7.3.6 Reference expressions 

cre : ConRefExp = 
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ref (Identifier)       | 
   ref ConValExp at Identifier fer 

7.3.7 Instructions 

cin : ConIns = 
   ConRefExp := ConValExp               | 

enrich( ConTypExp, ConTypExp )             | 
call Identifier.Identifier ( val ConActPar ref ConActPar )     | 
new Identifier by Identifier.Identifier (ConActPar)       | calls of object constr. 

while ConValExp do ConIns od             | 
if ConValExp then ConIns else ConIns fi          | 
skip-ins                      | 
ConIns ; ConIns 

In the first clause we changed prefix notation to infix notation, and we skipped parentheses. The latter 

transformation is not harmful for the adequacy of the homomorphism, since — intuitively — assignment 

instructions will be always closed by the parentheses of “other structures” such as ;, do, then, etc. A formal 

proof should be carried by induction on the structure of our grammar.  

In the last clause we have also skipped parentheses, but in this case to prove that such a transformation 

does not destroy the adequacy of our homomorphism we have to use the fact that the sequential composition 

of functions is associative, and refer to Theorem 2.14-1 in Sec 2.14. 

7.3.8 Declarations 

cde : ConDec = 
let ConLisOfIde be ConTypExp with ConYokExp tel   | 
enrich-cov( ConTypExp, ConTypExp )        | 
class Identifier parent ConClaExp with ConClaTra ssalc  | 
skip-dec                   | 
ConDec ; ConDec 

Similar comments, as in Sec. 7.3.7, apply here to the last clause.  

7.3.9 Openings of procedures 

cpo : ConProOpe = open procedures 

7.3.10 Class transformers 

cct : ConClaTra = 
let Identifier be ConTypExp with ConYokExp as PriSta tel      |  add abs. attribute 

… 

set Identifier be ConTypExp tes               | add con. typ const. 

proc Identifier (ConImpProSig) begin ConPro end         | 
fun Identifier (ConFunProSig) begin ConPro return ConValExp end  | 
obj Identifier (ConObjConSig) begin ConPro end         | 
… 
ConClaTra ; ConClaTra                  | 
skip-ctr 

The following component of procedure declaration: 

Identifier (ConImpProSig) 

will be called a procedure header. 
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7.3.11 Preambles of programs 

cpp  ConProPre = 
   ConDec       | 
   ConIns        | 
   ConProPre ; ConProPre 

7.3.12 Programs 

cpr : ConPro = ConProPre ; open procedures ; ConIns  

Here we may safely drop parentheses since they are the outermost parentheses in a program, and therefore 

their removal do not destroy isomorphicity.  

7.3.13 Declaration-oriented carriers 

cli : ConLisOfIde =  
   Identifier      | 
   Identifier , ConLisOfIde 
 
cds : ConDecSec = 
   ConLisOfIde as ConTypExp 
 
cfp : ConForPar  = 

ConDecSec     | 
ConDecSec , ConForPar 

 
cap : ConActPar = 

ConLisOfIde 

See a comment about the last equation in Sec. 7.2.13. 

7.3.14 Signatures 

cis  : ConImpProSig  = val ConForPar ref ConForPar 
cfs : ConFunProSig = val ConForPar ret ConTypExp 
coc : ConObjConSig = val ConForPar ret Identifier 

An example of a concrete imperative-procedure declaration may be the following 

proc compute ( val x, y as integer, z as real, 
ref p, r as integer )  
begin  

cpr  
end 

where cpr is a concrete program.  

7.4 Colloquial syntax 

Colloquial syntax is, as a rule, THE syntax of our language, i.e., the syntax to be used by programmers. 

Consequently the metavariables (non-terminals) of colloquial syntax will not be prefixed by Col. E.g., instead 

of writing ColValExp we shall write just ValExp. 

In our language we introduce two categories of colloquialisms: the omission of parentheses in arithmetic 

and boolean expression, and the creation of a new constructor of attribute declarations.  
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The omission of parentheses in arithmetic and boolean expressions concerns value expressions and transfer 

expressions. Formally this means that in a concrete-to-colloquial step to every parenthesized colloquial clause 

such as, e.g., 

(ValExp +. ValExp) 

 we add a corresponding parentheses-free clause 

ValExp +. ValExp 

Consequently the grammatical equation for colloquial value-expressions will look as follows: 

vex : ValExp = 
true | false         | 

   IntegerSyn        | 
   RealSyn         | 
   ‘ TextSyn ‘         | 
   Identifier         | 
   obj ValExp at Identifier jbo   | 
   call Identifier.Identifier(ActPar)  | 
   (ValExp /. ValExp)      | 
   ValExp /. ValExp      | new clause (without parentheses)  
   … 

In colloquial syntax parentheses are optional — we may use them or not. The signature of the algebra of 

colloquial syntax is, therefore, an extension of the signature of concrete syntax by constructors building 

parentheses-free expressions.  

The corresponding restoring transformation for arithmetic expressions adds parentheses according to the 

rule that multiplication and division bind stronger than addition and subtraction, and the “remaining” 

parentheses are added from left to write. E.g., the colloquial expression: 

a + b*c – e*f 

will be restored to 

((a + (b*c)) – (e*f)). 

7.4.1 New constructor of attribute declarations 

In the repertuar of class transformers (Sec. 6.7.4) we have only one constructor that concerns attributes, namly 

the declaration of an abstract attribute. Since the concretization of an abstract attribute may be realized by an 

assignment instruction, we have not introduced at this level a constructopr that adds a concrete attribute. Now, 

to allow programmers to declare a concrete attribute in one step, e.g. : 

let abscissa = 2,15 be real and public tel 

we introduce the following colloquial-grammar clause : 

let Identifier = ValExp be TypExp and PriStat tel 

and we assume that such colloquial declarations are restored to the following concrete forms 

let Identifier be TypExp and PriStat tel; 
Identifier := ValExp 

Of course, we could have introduced this constructors at the level of denotations, but instead we decided to do 

it at the level of colloquial syntax just to show that at the level of denotations we do not necessarily need to 

care about the future colloquial syntax. When we design a programming language we may wish to take our 

decisions about syntax as late as possible. 
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7.4.2 The list of colloquial domains 

Since we are going to use our colloquial syntax in the investigations about validating programming in Sec. 9, 

we list below all colloquial-syntax domains and their corresponding metavariables. Since colloquial syntax is 

the ultimate syntax of the user, we do not prefix the names of colloquial domains with Col, analogously to 

Abs and Con. E.g. instead of talking about “colloquial expressions” we shall talk about “expressions”. 

ide : Identifier   — identifiers 

cli  : ClaInd    — class indicators    
pst  : PriSta    — privacy statuses 
tex : TypExp   — type expressions 

trx  : TraExp   — trace expressions 

yex : YokExp   — yoke expressions 

vex : ValExp   — value expressions 

rex : RefExp   — reference expressions 

ins : Instruction  — instructions 
dec : Declaration  — declarations 

opp : OpePro   — the opening  of procedures 

ctr  : ClaTra   — class transformers  

ppr : ProPre   — program preambles 

prg : Program   — programs 

loi  : LisOfIde   — lists of identifiers 

des : DecSec   — declaration sections 

fpa : ForPar   — formal parameters 

apa : ActPar   — actual parameters 

ips : ImpProSig  — imperative-procedure signatures 

fps : FunProSig  — functional-procedure signatures 

ocs : ObjConSig  — object-constructor signatures 

7.5 Semantics 

7.5.1 The ultimate semantics of Lingua 

Since in our model colloquial syntax is assumed to be the user’s “ultimate” syntax, its semantics: 

SEM : AlgColSyn ⟼ AlgDen 

will be called just the semantics of Lingua. It is not a homomorphism, and symbolically may be written as a 

composition of three many-sorted mappings 

SEM = RES ● A2C-1 ● A2D 

where: 

• RES  is a restoring transformation from colloquial syntax to concrete syntax, 

• A2C-1  is a chosen invers of A2C and represents a parsing step, 

• A2D  is a homomorphism which constitutes the semantics of abstract syntax.  

It is to be emphasized in this place that whereas the choice of A2C-1 is irrelevant for SEM, the choice of RES 

defines the way in which we understand colloquial syntax.  

Let us start the process of building the definition of semantics from the definition of A2D. This is an easy 

step, since the grammar of abstract syntax is unambiguous. In this step for each syntactic category, i.e., for 

each carrier of the algebra of abstract syntax, we create one definitional equation with several semantical 

clauses. E.g., for the category of programs the equation includes only one clause, and is the following: 

A2Dapr.[apr] =  
 apr :: make-prog( ade , create-pro-opening() , ain ) ➔  
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make-prog.(A2D.ade.[ade], create-pro-opening(), A2D.ain.[ain] 

In the first line of this definition, the first apr is an index, and the apr in square brackets is a metavariable 

running over AbsPro.  

The second and the third line constitute together one semantical clause. The symbol :: denotes (not quite 

formally) a pattern matching operator, and expresses the fact that apr is parsable to the form make-prog( ade , 
create-pro-opening() , ain ). Since our grammar is unambiguous, this parsing is unique.  

The constructor of denotations make-prog is the semantic counterpart of the prefix make-prog. This 

constructor is applied to the denotations of the components of the program, which expresses the 

compositionality (denotationality) of the semantics or abstract syntax. Another typical example, which this 

time concerns instructions, is the following: 

A2Dain.[ain] =  
ain :: assign(are , ave)         ➔  

assign.(A2Dare.[are], A2Dave.[ave]) 
ain :: call-imp-pro(aid-1.aid-2 , apa-1 , apa-2)  ➔  

call-imp-pro.( A2Daid.[aid-1] , A2Daid.[aid-2] , A2Dapa.[apa-1] , A2Dapa.[apa-2]) 
 …   

ain :: seq-ins(ain-1 , ain-2)       ➔  
seq-ins.(A2Dain.[ain-1], A2Dain.[ain-2]) 

Now, let’s pass to the definition of A2C-1. Since A2C is not an isomorphism, we have to choose one of 

alternative parsing strategies, but since it is adequate, this choice is irrelevant for the “meaning” of C2D. Note 

also that A2C introduces only “three ambiguities”, namely the omissions of parentheses in three grammatical 

concrete clauses: 

(ConIns ; ConIns) 
(ConDec ; ConDec) 
(ConClaTra ; ConClaTra) 

Since these cases are similar to each other, let’s analyze  the case of instructions. To define a chosen parsing 

strategy — let’s call it C2A — we introduce an auxiliary subdomain of instructions called atomic instructions:  

atin : AtomIns = 
   ConRefExp := ConValExp            | 

call Identifier.Identifier ( val ConActPar ref ConActPar )  | 
new Identifier by Identifier.Identifier (ConActPar)    |  

while ConValExp do ConIns od          | 
if ConValExp then ConIns else ConIns fi       | 
skip-ins                        

It is now easy to prove (by induction) that every concrete non-atomic instruction is unambiguously parsable 

into an instruction of the form: 

atin ; cin, 

where cin may, of course, include some nonatomic instructions.  

We emphasize that AtomIns is not regarded as a new carrier of the algebra of concrete syntax, but as an 

auxiliary domain “outside” of this algebra. We may say that we do not modify the algebra of concrete syntax, 

but we build an auxiliary one, to be used only for the purpose of parsing60.   

Now, the definition of C2A.cin may be written as follows  

 

60 Of course, we could have introduced an analogous construction already on the level of the algebra of denotations. 
We didn’t do so, since in our method, we want to sharply distinguish between the stages of building denotations and 
of building syntax. In our opinion a language designer should not think of syntax, when designing the core of the 
language represented by denotations.  
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C2Acin.[cin] =  

cin :: cre := cve           ➔  
 assign(C2Acre.[cre] , C2Acve.[cve]) 

cin :: call cid-c.cid-p ( val cap-v ref cap-r)  ➔  
 call-imp-pro(C2Acid.[cid-c] , C2Acid.[cid-p] , C2Acap.[cap-v] , C2Acap.[cap-r]) 

 …   
cin :: atin ; cin           ➔ seq-ins(C2Acin.[atin] , C2Acin.[cin]) 

From this definition, the definition of A2D, and the equation 

C2D = C2A ● A2D                             (7.5-1) 

we can algorithmically generate the following equation of the definition of C2D: 

C2Dcin.[cin] =                             (7.5-2) 
 cin :: cre := cve           ➔  

assign.(C2Dcre.[cre], C2Dcve.[cve]) 

 cin :: call cid-1.cid-2 ( val cap-1 ref cap-2)  ➔ 
  call-imp-pro.(C2Dcid.[cid-1] , C2Dcid.[cid-2] , C2Dcap.[cap-1] , A2Dcap.[cap-2]) 
 … 
 cin :: atin ; cin           ➔  

seq-ins.(C2Dcin.[atin], C2Dcin.[cin]) 

Let’s see how it works for the first clause: 

C2Dcin.[cre := cve]                   =        by (7.5-1) 
A2Dain.[C2Aain.[ cre := cve ]]              =       by isomorphicity of C2A 
A2Dain.[ assign(C2Acre.[cre] , C2Acve.[cve]) ]          =   by homomorphicity of A2D 
assign.( A2Dare.[ C2Acre.[cre] ], A2Dave.[C2Acve.[cve] ] )    =        by (7.5-1) 
assign.( C2Dcre.[cre], C2Dcve.[cve] ) 

In the second transformation we use the fact that in the case of assignments, A2Cain hence also C2Acin, are 

reversible, i.e. “locally isomorphic”.  

The last case of a semantic clause to be considered is the semantics of transfers (and yokes). We shall 

explain this case on the example of the following yoke: 

record.salary + record.bonus < 10000 

and we assume that this yoke is written in a concrete syntax. We recall that since transfers are not storable, 

the denotation of a yoke expression is a yoke, i.e., a function from arbitrary values to boolean values, hence: 

C2D.tra.[ record.salary + record.bonus < 10000 ] : ValueE ⟼ ValueE 
C2D.tra.[ record.salary + record.bonus < 10000 ].val = 
 val : Error      ➔ val 
 let 
  (cor, typ) = val 
 sort-t.typ ≠ ‘R’    ➔ ‘record expected’ 
 let 
  (‘R’, rec-ty) = typ  where rec-ty : Identifier ⟹ Type         rec-ty is a record type 

 rec-ty.salary = ?   ➔ ‘attribute unknown, 
 rec-ty.salary ≠ (‘real’)  ➔ ‘a real number expected’ 
 rec-ty.bonus =? … 

We skip the remaining (obvious) part of this definition. 

Let us pass now to the restoring function RES. Similarly as C2A, also RES adds parentheses, but now, 

the way it does it makes difference for the meaning of expressions. E.g., if we decide to add the “missing” 

parentheses to  
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a + b * c + (d – e) * f 

in assuming that multiplication bind stronger than addition, and besides we add them from left to right: 

( (a + (b * c)) + ((d – e)*f) )  

then we decide not only about the functioning of a parser, but also about the meaning of the expression. 

We shall not go into the technical details of a definition of RES assuming that it has been somehow (chosen 

and) defined. Let us think, therefore, about the definition of SEM, which is a composition of RES with the 

semantics of concrete syntax: 

SEM = RES ● C2D 

The definition of this semantics may be created algorithmically from the definition of C2D. Let’s show it on 

the example of equation (7.5-2). Its colloquial counterpart will be the following: 

SEMins.[ins] =  
 RES.ins :: cre := cve           ➔  

assign.(C2Dcre.[cre], C2Dcve.[cve]) 

 RES.ins :: call cid-1.cid-2 ( val cap-1 ref cap-2)  ➔ 
  call-imp-pro.(C2Dcid.[cid-1] , C2Dcid.[cid-2] , C2Dcap.[cap-1] , A2Dcap.[cap-2]) 
 … 
 RES.ins :: atin ; cin           ➔  

seq-ins.(C2Dcin.[atin], C2Dcin[cin]) 

In this definition we first restore a colloquial instruction ins into a corresponding concrete one RES.ins, and 

then we parse it to apply C2D cin. Note that C2Dcin also adds some parentheses (to instructions) by using 

C2A. 

7.5.2 Why do we need a denotational semantics? 

A denotational semantics of a programming languages constitutes a fundament for the realization of at least 

three goals: 

1. to build an implementations of the language, i.e. an interpreter or compiler, 

2. to write a concise, complete and consistent user manual, 

3. to establish constructors of functionally correct programs. 

Regarding the first goal, the definitional clauses of a denotational semantics may be regarded as procedures 

of an interpreter. They mutually call themselves, and call also constructors of denotation. As such they should 

be easily implementable. They also indicate a systematic way to the development of a compiler. 

A denotational semantics is also an adequate starting point for writing a user manual. Even if a user is not 

prepared to read, and understand denotational equations, these equations constitute guidelines for an author of 

a manual. Translated into intuitive explanations — as we did in Sec. 6 — result with a manual that is consistent, 

complete and concise at the same time. An experiment of writing a manual in this way has been described in 

[29].  

One of the well-known nightmares of manual reader is that manual usually don’t keep up with the updates 

of implementations. The existence of a mathematical semantics of a language which should be conformant 

with both, the implementation and the manual, helps in keeping the adequacy of manuals. 

It is also to be mentions in this place that although a denotational semantics needs not be a core of a manual, 

it should be contained in it as a standard to be referred to in cases of doubts. In such cases it may be practical 

to write semantic clauses in an unfolded form. E.g. instead or writing: 

SEM.ins.[rex := vex] = 
 assign.(SEM.rex.[rex], SEM.vex.[vex] 

we may prefer to write 
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SEM.ins.[rex := vex].sta = 
 is-error.sta       ➔ error.sta 
 let 
  red = SEM.rex.[rex] 
  ved  = SEM.vex.[vex] 
 ved.sta = ?       ➔ ?  

ved.sta : Error      ➔ sta ◄ ved.sta 
red.sta : Error      ➔ sta ◄ red.sta 

 let 
  val            = ved.sta 
  ref             = red.sta 
  (tok, (typ, yok, re-ota))     = ref 

(env, (obn, dep, st-ota, sft, ‘OK’)) = sta 
 re-ota ≠ $ and re-ota ≠ st-ota ➔ ‘reference not visible’ 
 not ref VRA.cov val    ➔ ‘incompatibility of types’ 
 true          ➔ (env, (obn, dep[ref/val], cov, st-ota, sft, 'OK'))  

Whereas implementations and manuals may be created without a mathematical semantics — which, 

unfortunately, is a fairly common practice — it is hard to expect that we could create (mathematically) sound 

program construction rules without it. How to do when we have such semantics, we explain in Sec. 9. 
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8 SEMANTIC CORRECTNESS OF PROGRAMS 

8.1 Historical remarks 

Semantic correctness of programs, historically called program correctness, was a subject of investigations 

from the very beginning of the computer era. The earliest paper in this field — today practically forgotten — 

has been published by a British mathematician, Alan Turing61, in 1949 [78]. Nearly twenty years later, in 

1967, the same ideas were investigated again by an American scientist, Richard Floyd [47]. In 1978, the 

Association for Computing Machinery established the annual Turing Price “for outstanding achievements in 

informatics”. One of the first winners of that price in 1978 was… Richard Floyd.   

As far as we know, it has never been established if Floyd knew Turing’s work. In the 1980-ties, A. Blikle 

wrote to Cambridge University on that issue. The only answer he received was substantial advice: do not try 

to build “yet another myth about Turing”. 

The work of Floyd introduced a fundamental concept of an invariant of a program and was dedicated to 

programs represented by graphical forms called flow-diagrams or frow-charts. In 1969, a British scientist, 

C.A.R Hoare (also a Turing Price winner), published a paper [55] concerning Floyd’s ideas applied to 

structural programs, i.e., programs constructed with the help of sequential composition, if-then-else 

branching, and while loops. The works of C.A.R. Hoare and his followers, called Hoare’s logic, were later 

summarised in two extensive monographs by K. Apt [4] and by K. Apt and H.R. Olderog [5].  

The correctness of programs investigated by C.A.R. Hoare was later called partial correctness. A program 

is partially correct for a precondition prc and a postcondition poc if whenever prc is satisfied by an input 

state, and the execution of this program terminates, then the terminal state satisfies prc. 

An alternative, or better a strengthening, of partial correctness is total correctness, introduced by E. W. 

Dijkstra in [44] and then investigated in detail in [45]. In this case, correctness means that the satisfaction of 

a precondition guarantees that the program terminates and satisfies the postcondition at the end.  

Research devoted to program correctness was also developed in Poland. The first paper on that subject 

(although in an approach different from Hoare’s) was published in 1971 by A. Mazurkiewicz [61]. A year 

later, during the first conference in a series of conferences on Mathematical Foundations of Computer 

Science62, A. Blikle and A. Mazurkiewicz presented a joint paper [32] on program correctness based on an 

algebra of binary relations and covering recursive programs with nondeterminism. Nearly ten years later, 

A.Blikle published a paper [23] with a complete model of so-called clean total correctness for programs 

corresponding to arbitrary flow diagrams but without procedures. Blikle’s correctness means that a correct 

program not only does not loop but also does not abort. This approach also gave rise to using three-valued 

predicates when talking about program correctness.  

In this place, we should also mention two fields of research developed at Warsaw University. The first was 

a formalized approach to program correctness based on algorithmic logic [10], where programs appear in 

logical formulas. The second [61] was much more engineering-oriented and split into three areas: grammatical 

deduction, performance analysis of computing systems, and formal specification of software requirements. An 

interesting application of the second approach is described in a paper by D.L. Parnas, G.J.K. Asmis, and J. 

 

61 Alan Turing (1912-1954) was one of the creators of the theory of computability. His model known today as Turing 
machine is regarded as one of fundamental concepts of this theory. Due to his work "On Computable Numbers, With 
an Application to the Entscheidungsproblem" Turing was considered as one of the greatest mathematicians of the 
world. Unfortunately he was also subject to a homophobic discrimination. When in 1952 police has learned about his 
homosexuality he was forced to choose between prison or hormonal therapy. He has chosen the latter but committed 
a suicide.  

62 This conference was organized in 1972 by a group of young researchers form the Institute of Computer Science of 
the Polish Academy of Sciences and the Department of Mathematics and Mechanics of Warsaw’s University. Next 
year a similar conference was organized in Czechoslovakia witch gave rise to a long series of MFCS conferences. 
Since 1974 proceedings of these conferences were published by Springer Verlag in the series Lecture Notes in 
Computer Science.  
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Madey [70] devoted to software safety assessment for a Darlington Nuclear Power Generating Station 

(Canada) shutdown system.  

Despite its undoubted scientific importance, the idea of proving programs correct was never widely applied 

in software engineering. In our opinion, this situation was due to the implicit assumption that programs come 

first and their proofs are built later. This order is natural in mathematics, where a theorem precedes its proof, 

but is somewhat unusual in engineering. Imagine an engineer who first constructs a bridge and only later 

performs all the necessary calculations. Such a bridge would probably collapse before its construction was 

completed, and in fact, this is what unavoidably happens with programs. The first version of a code usually 

does not work as expected. Consequently, a large part of the program-development budget is spent on testing 

and “debugging”, i.e., on removing bugs introduced at the stage of writing the code. It is a well-known fact 

that all bugs can never be identified and removed by testing. Therefore, the remaining bugs are removed at 

the user’s expense under the name of “maintenance”. This process practically never terminates. 

In this place, it is worth quoting a remark of Edsger W. Dijkstra that he called a “sad remark” 63: 

Since then we have witnessed the proliferation of baroque, ill-defined and, therefore, unstable software 

systems. Instead of working with a formal tool, which their task requires, many programmers now 

live in a limbo of folklore, in a vague and slippery world, in which they are never quite sure what 

the system will do to their programs. Under such regretful circumstances the whole notion of a correct 

program — let alone a program that has been proved to be correct — becomes void. What the 

proliferation of such systems has done to the morale of the computing community is more than we can 

describe. 

Even though these words were written nearly half a century ago, and during this time, the reliability of 

hardware and the applicability of IT has increased by several orders of magnitude, the problems pointed out 

by E.W. Dijkstra are still there.   

In this book (Sec. 8 and Sec. 9), we are trying to develop ideas sketched earlier by A. Blikle in [21] and 

[22], where instead of proving programs correct, a programmer develops programs using rules that guarantee 

program correctness. In such a framework, a software engineer works as an engineer who builds bridges, cars, 

or airplanes, and where products are created from correct components by using rules that guarantee the 

correctness of the result. 

Since the rules for developing correct programs are derived from the rules of proving programs correct, we 

shall start with the latter. The discussion will be based on an algebra of binary relations since this leads to a 

relatively simple model where many technicalities of programming languages can be hidden. Of course, to 

apply these rules in a practical environment, they have to be expressed on the grounds of a mathematical 

model of a programming language. A language Lingua-V (V for “validation”) with such a model is described 

in Sec. 9.  

8.2 A relational model of nondeterministic programs 

Each program, and each of its imperative components, defines an input-output relation (I-O relation) between 

its input states, and the corresponding output states. Of course, in a deterministic case, this relation is a 

function. Although programs in Lingua are deterministic, the discussion of a (possibly) non-deterministic 

case seems worthwhile, especially since it does not complicate the model.  

Let S be an arbitrary, possibly infinite, set of elements called states. In Lingua, states are fairly complex 

items but in the abstract case, we do not need to assume anything about them. In the relational model programs 

are represented by binary relations over S, i.e., elements of the set: 

Rel(S, S) = {R | R ⊆ S x S} 

The fact that 

 

63 In [44] published in 1976 page 202.  
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a R b for a, b : S 

means that there exists an execution of program R that starts in a and terminates in b.  

 

 

 

In a non-deterministic case, there may be more than one execution that starts in a. Some may terminate with 

another state, say c (Case 1 of Błąd! Nie można odnaleźć źródła odwołania.Fig. 7.5.2-1), some others may 

be infinite (Case 2 of Fig. 7.5.2-1). In our model, the difference between Case 1 and Case 2 cannot be 

expressed. In both cases, we can only say that 

a R b and a R c. 

Note that due to the use of states which may carry errors, abortion of a computation from a to b means that b 

carries an error. This also means that if R is a function than the non-existence of a state b such that a R b 

means that a starts an infinite execution.  

If we want to deal with infinite executions explicitly, we need a different concept of program denotations. 

Two such models were analysed in [19]. One uses so-called δ-relations, where a R δ means that there exists 

an infinite computation that starts in a64. In this model, however, we cannot describe the fact that there are 

two or more different infinite computations that start from the same state. Such issues can be handled on the 

ground of the second model, where program denotations are sets of finite or infinite sequences of states called 

bundles of computations. Both approaches can be used in building denotational models of programming 

languages.  

8.3 Iterative programs 

In “prehistoric” informatics of the years 1940/1950, programs were written as lists of labeled instructions 

executed sequentially one after another unless a jump instruction goto interrupted that flow. With jump 

instructions one can build an arbitrary graph of elementary instructions called a flow-diagram. Early papers 

on program correctness were devoted to such programs later called iterative programs. 

A general relational model of an iterative program is the following fixed-point set of so called left-linear 

equations65: 

 

64 In this model each δ-relation is a union of three set of pairs R ⊆ S x S, D ⊆ S x {δ} and {(δ, δ)}, where S and D may 
be empty.  

65 They are called so because coefficients of variables Xi stand on their left-hand side. A symmetric model of right-linear 
equations of the general form X = XR | Q has been analysed in [23].  

Fig. 7.5.2-1 Two nondeterministic cases 

a 

b 

c 

Case 1 Case 2 

a 

b 

c 

∞ 
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X1 = R11 X1 | … | R1n Xn | E1n  

…                                       (8.3-1) 

Xn = Rn1 X1 | … | Rnn Xn | Enn 

that corresponds to a graph whose nodes are numbers 1,…,n, each relation Rij labelles a unique edge between 

i and j, and each Ein (exit relation) is a “dangling edge” that start on i, but does not point to any other node. 

The code of such a program may be written as an arbitrarily ordered66 sequences of labelled instructions of 

the form: 

i : do Rij goto j and 

i : do Ein. 

If there is no instruction between i and j, then the relation Rij is empty which means that there are no executions 

between i and j. Since the atomic instructions Rij and Ein are not necessarily functions, such a program may 

have a non-deterministic character. For (8.3-1) to be deterministic, two conditions must be satisfied: 

• all Rij and Ein must be functions, 

• for every i, all Ri1,…,Rin and Ein must have disjoint domains. 

As has been proved in [23], if (P1,…,Pn) is the least solution of (8.3-1), then Pi is the input-output relation of 

the path from node i to node n. Therefore, if we assume that 1 represents the initial node, and n is the final 

node, then P1 is the input-output relation (the denotation) of our program. The class of iterative programs 

understood in that way, together with their correctness-proof rules, were investigated in [19] and [23]. It is 

worth mentioning in this place that Pi’s correspond to A. Mazurkiewicz tail functions [64] or D. Scott and Ch. 

Strachey continuations [75]. Both these models were published in 1971.  

Programmers of the decade 1950/1960 were competing with each other in building more and more 

complicated flowchart programs that usually nobody except them was able to understand. Unfortunately, quite 

frequently, the authors themselves were not able to predict the behavior of such programs.  

As a reaction to these problems, first algorithmic programming languages such as Fortran and Algol-60 

were created. They were offering tools for structural programming such as sequential composition, if-then-
else, and while67. Such programs were much easier to understand and also allowed for significant 

simplification of program-correctness proof rules.  

In the sequel, we shall restrict our discussion to only three primary structural constructors since they allow  

for the implementation of any “implementable” function68: 

1. sequential constructor denoted by a semicolon “;”, 

2. conditional constructor if-then-else-fi, 
3. loop constructor while-do-od.  

The sequential composition is the composition of relations (functions) as defined in Sec. 2.7. To define the 

remaining constructors, we have to introduce additional concepts. Since in our case the denotations of boolean 

expressions are three-valued partial functions, each of them will be represented by two disjoint set of states: 

   C = {s | p.s = tt} 

 ¬C = {s | p.s = ff} 

 

66 The execution of such a program does not depend on the order of its instructions since every instruction points to the 
instruction which should be executed as the next one.  

67 The author who introduced the term “structured programming” was a Dutch computer scientist Edsger Dijkstra (see 
[43] and [44]).  

68 Precisely speaking, any “computable” function. This claim has been known as Church’s thesis. A formal proof of this 
thesis in shown in [17], and is based on a simple programming language with a (sort of) denotational semantics.  



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       148 

 

Of course, if p is a two-valued total predicate, then C | ¬C = S, and therefore only one set is necessary to 

represent it. Notice also that our model does not distinguish between the two cases: 

p.s : Error 

p.s = ? 

In both of them s : S – (C | ¬C). If we want to distinguish between these cased, we have to represent predicates 

by three disjoint sets: 

   C = {s | p.s = tt} 

 ¬C = {s | p.s = ff} 

 eC = {s | p.s : Error} 

where S – (C | ¬C | eC) includes states initiating infinite executions of p. We are not going to do so, since in 

constructing correct programs we equally care about the avoidance of abortion and of infinite computations. 

Therefore we can identify these two cases in our model. Of course, in the denotational model of Lingua the 

abortion was distinguished from infinite looping, because the detection of te latter is not computable.  

It may be interesting to see, how on the ground of our relational model, we can express the difference 

between McCarthy’s and Kleene’s operators of propositional calculus. E.g.  

(A, ¬A) and-mc (B, ¬B) = (A ∩ B, ¬A | A ∩ ¬B)  — McCarthy 

(A, ¬A) and-kl (B, ¬B) = (A ∩ B, ¬A | ¬B)    — Kleene 

Now, let P and Q represent arbitrary programs and a pair of disjoint sets of states (C,¬C) ― an arbitrary three-

valued partial predicate. Our three structural constructors may be defined as particular cases of the universal 

set of equations (8.3-1). We recall (Sec. 2.7) that for any set of states A  

[A] = {(a, a) | a : A} 

is a subset of an identity relation (function). Now, the equational definitions of structural constructors are the 

following: 

Sequential composition — P ; Q 

X = P Y 
Y = Q 

Therefore by Theorem 2.4-2: 

X = P Q 

Conditional composition — if (C,¬C) then P else Q fi 

X = [C] Y | [¬C] Z 
Y = P 
Z = Q 

where [C] and [¬C] are identity functions. Therefore by Theorem 2.4-2:: 

X = [C] P  |  [¬C] Q 

Loop —  while (C,¬C) do P od 

X = [C] P X | [¬C] 

As is easy to prove in this case 

X = ([C] P)* [¬C] 

Summarizing our definitions: 

P ; Q          = P Q 
if (C,¬C) then P else Q fi   = [C] P  |  [¬C] Q 
while (C,¬C) do P od    = ([C] P)* [¬C] 
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At the end one methodological remark is necessary. Although in Lingua all programs are deterministic, hence 

correspond to functions rather than relations, in the relational theory of program correctness we shall mainly 

talk about arbitrary relations (with an exception of while loops), since in these cases nondeterminism does not 

lead to more complicated proof rules.  

8.4 Procedures and recursion 

The next step towards the development of structural-programming techniques was the introduction of 

procedures and, in particular — recursive procedures. On the ground of the algebra of relations mutually 

recursive procedures may be regarded as components of a vector of relations (R1,…,Rn) which is the least 

solution of a set of fixed-point polynomial equations of the form: 

X1 = Ψ1.(X1,…,Xn) 

…      

Xn = Ψn.(X1,…,Xn) 

In these equations, each Ψi(X1,…,Xn) is a polynomial, i.e., a combination of variables, say X, with constants, 

say A, B, C, by composition and union, e.g., AXYB | XXC. Such sets of equations may be regarded as single 

fixed-point equations in a CPO of relational vectors ordered component-wise, i.e., in the CPO over the carrier: 

Rel(S,S)cn = {(R1,…,Rn) | Ri : Rel(S,S)} 

Every such set of polynomial equations defines a vectorial function: 

Ψ : Rel(S,S)cn ⟼ Rel(S,S)cn  

Ψ.(R1,…,Rn) = (Ψ1.(R1,…,Rn),…, Ψn.(R1,…,Rn)) 

If each Ψi is continuous in all its variables, then Ψ is continuous as well, and therefore Kleene’s theorem holds 

(Sec. 2.4).   

Since the correctness problem for recursive procedures is much more complicated than in the iterative case 

(see [5]), we shall investigate in Sec. 8.6.2 and Sec. 8.7.2 a simple scheme of a recursive procedure with only 

one procedural call that corresponds to an equation of the form: 

X = HXT  |  E                                    (8.4-2) 

where H, T, E : Rel(S,S) are relations called the head the tail and the exit of the procedure, respectively. 

Although this is certainly not a general scheme for a recursive procedure, it is quite common in practice. This 

scheme will be referred to as a simple recursion.  

Notice that (8.4-2) covers the case of the iterative instruction  while-do-od with H = [C]P, T = [S] and E 
= [¬C].  

8.5 Three concepts of program correctness 

To express the property of program correctness on the ground of the algebra of binary relations, we shall use 

two operations of a composition of a relation with a set. Both are similar to sequential compositions of relations 

defined in Sec. 2.7. In the sequel A, B, C,… will denote subsets of the set of states S and P, Q, R,… will 

denote relations in Rel(S,S). Both operations are denoted by the same symbol “●”, which has also been used 

for a composition of functions: 

A●R = {s | (∃a:A) a R s}  ― left composition; the image of A by R 
R●B = {s | (∃b:B) s R b}  ― right composition; the coimage of B by R. 

In the sequel, the symbol of composition “●” will be omitted; hence we shall write AR and RA. Intuitively 

speaking (see Fig. 7.5.2-1): 

• AR is the set of all final states of executions of R that start in A; notice however that some of them may 

be at the same time final states of executions that start outside A,  
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• RB is the set of all initial states of executions of R that terminate in B, but if R is not a function, then 

some of them may at the same time generate executions that terminate outside B or do not terminate at 

all. 

 

 

Fig. 8.5-1 Left- and right composition of a set with a relation 

Both compositions of a relation with a set have properties similar to that of the composition of two relations. 

For instance, they are associative: 

A(RQ) = (AR)Q 

(RQ)B = R(QB) 

and distributive over unions of sets and relations: 

(A | B) R  = (AR) | (BR) 

A (R | Q) = (AR) | (AQ) 

… 

They are also monotone in each argument: 

if A ⊆ B  then  AR ⊆ BR 
if R ⊆ Q  then  AR ⊆ AQ 

and analogously for right-hand-side composition. In fact, both operations are continuous in each argument. In 

the sequel, we shall assume that composition binds stronger than union hence we shall write 

AR | BR instead of (AR) | (BR) 

Lemma 8.5-1 For any A,B,C ⊆ S, and R : Rel(S,S) the following equalities hold: 

1. [A]B = A∩B 
2. A[B] = A∩B 
3. (A∩B)R = A [B] R 
4. R(A∩B) = R [A] B 

5. (A∩B)R ⊆ C is equivalent to A[B]R ⊆ C 
6. if A ⊆ [B]RC then (A∩B) ⊆ RC 

Proofs are left to the reader. 

Now we are ready to define three fundamental concepts concerning the correctness of programs: partial 

correctness, weak total correctness, and clean total correctness. All these concepts express the fact that if an 

input state of a program satisfies certain conditions, then the output state has expected properties. For instance, 

we may expect that if a list-sorting program is given an appropriate list (precondition), then it will return a 

sorted list (postcondition).  
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With every property of states, we can unambiguously associate a set of states satisfying this property. As a 

consequence, the correctness of a program R for precondition A and postcondition B may be expressed in the 

algebra of relations and sets in the following way: 

AR ⊆ B ― partial correctness of R for precondition A and postcondition B; 
     (∀a:A) if (∃ b) aRb, then b:B 

A ⊆ RB ― weak total correctness69 of R for precondition A and postcondition B; 
     (∀a:A) (∃ b) aRb and b:B 

Partial correctness means that every execution that starts in A, if it terminates, then it terminates in B. Set A is 

called partial precondition, and B is called partial postcondition. If B does not contain error-carrying states 

then we talk about clean partial correctness.  

Weak total correctness means that for every state a : A, there exists an execution that starts in a and 

terminates in B. Set A is called weak total precondition, and B is called weak total postcondition. The adjective 

“weak” expresses the fact that the existence of an execution from a to B does not exclude that other executions 

starting with a may terminate outside B or do not terminate at all. Similarly as in the former case, if B does 

not contain error-carrying states then we talk about weak clean total correctness. 

Both defined concepts of program correctness were historically introduced for deterministic programs, i.e., 

for the case where R was a function. In such cases, the inclusion A ⊆ RB means that each execution of R that 

starts in A terminates in B. That property will be called clean total correctness and programs with this property 

will be said to be totally correct with clean termination. Our validating language described in Sec. 9 will 

include program-construction rules that guarantee clean total correctness of constructed programs.  

As is easy to see, in the non-deterministic case, none of the partial and total correctness is stronger than the 

other. Indeed, partial correctness does not imply termination, and the existence of one terminating execution 

from a to B does not mean that any terminating execution starting in a will terminate in B.  

In the deterministic case, however, total correctness obviously implies partial correctness. i.e., for any 

partial function F : S → S, 

A ⊆ FB implies AF ⊆ B                                              (8.5-1)  

The following implication is also true: 

if AF ⊆ B and for every a : A, F.a is defined then A ⊆ FB                        (8.5-2) 

Both observations lead to the following theorem: 

Theorem 8.5-1 If F is a function, then for any A,B ⊆ S the following facts are equivalent: 

• A ⊆ FB      — total correctness of  F wrt A and B 

• AF ⊆ B and A ⊆ FS  — partial correctness of  F wrt A and B, plus termination of  F on A  ■ 

Clean termination of a deterministic program F on A means that F is a total function on A, and F.a never 

carries an error.  

We say that a deterministic program has a halting property in A, if no execution of that program that starts 

in A is infinite.  

For many “practical programs”, the halting property may be so obvious that it does not need a formal proof. 

For instance, the program: 

pre n, m > 0 
x := 1; y := m; 

 

69 In the earlier versions of the book the weak total correctness of relations was called just total correctness. Krzysztof 

Apt convinced us that such wording may lead to misunderstanding. He also pointed out that in [6] written by him with 

two other authors the notion of weak total correctness is used in a slightly different way. It is used in the context of 

distributed programs and combines partial correctness with absence of failures and divergence freedom. 
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while x < n  
do; 

x := x+1; y := y*m 
od 

post y = m^n 

obviously halts for every n. However, there are cases where the halting property may be far from evident, 

even for very simple programs. One such program is displayed on the front of Warsaw University Library: 

x := n; 
while x > 1  

do 
if x mod 2 = 0 then x := x/2 else x := 3x + 1 fi 

 od 

Under this program we see the following question: “Why for every n > 0 this program stops?”. This question 

is, however, not adequate, since today we do not know, if this program has a halting property.  It expresses a 

well-known Collatz hypothesis formulated in 1937 and not answered till today. At the date, we are writing 

these words (February 2024), it was only proved70 that the hypothesis is true for all n < 5*271. 

A similar situation concerns Fermat’s theorem72 that was announced in the year 1637 and proved only in 

1994 by a British mathematician Andrew Wiles. His proof is 100 pages long and uses an advanced topological 

theory of elliptic curves. Fermat theorem can be also formulated as a halting problem.  

On the ground of the theory of computability, it has been proved by Alan Turing that there is no algorithm 

which given a program73 and an input state could check in a finite time, if this program terminates for this 

input state.  

Theorem 8.5-2 In the general case, the termination property of programs is not decidable. ■ 

In the sequel, proof rules for program correctness will be expressed by showing in which way the correctness 

of composed programs may be proved by proving the correctness of their components. These rules will be 

written in the following form: 

first assumption 
second assumption 
… 

first conclusion 
second conclusion. 
… 

 

70 One could (naïvely) expect that this result was proved by a simple checking in utilizing an ultra-fast computer. 
However, as is easy to calculate, if we assume that the execution of Collatz program for any n < 5*286 takes on the 
average 1 nanosecond, then such a check would take a time longer than 1065 times the age of the universe.  

71 Andrzej Blikle once fell victim to this hypothesis, when he was reporting his work on total correctness of programs at 
the University of Saarbrücken. When he said that with his method one can easily prove the termination of a program, 
a listener asked him to illustrate this fact on a simple example, and gave him the Collatz program. Blikle did not know 
this example, so he wrote the program on the board and proceeded to analyze it. Since he was not able to solve the 
problem off hand, he said: “I will think about this problem in the evening”. But in the evening he still did not have a 
proof. What a shame ― such a simple program, and he cannot cope with it. After returning to Warsaw he showed the 
problem to his colleagues, and was enlightened that he was not the only one who was not able to prove the Collatz’s 
hypotheses.  

72 This theorem claims that for no integer n > 2 there exist three positive integers x, y, z that satisfy the equality xn + yn  
= zn. That theorem had been written in 1637 by Pierre de Fermat on the margin of a book together with a commentary 
that he found a “marvellously simple proof” of the theorem which was however too long to fit to the margin. The 
theorem has been proved by Andrew Wiles in 1993, and his proof was more than 100 pages long.  

73 In the original work of A. Turing programs were represented by Turing machines, but since then in became a known 
fact that for every program there is a (functionally) equivalent Turing machine, and vice versa (e.g. cf. [17]). 
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where the arrow shows the direction of implication. In some rules, we have both-sided arrows, which means 

that the implication is of the iff-type. The list of assumptions and of conclusions are understood as 

corresponding conjunction.  

It should be emphasized in this place that in our approach to program correctness we are not building any 

“logic of programs” in Hoare’s or Dijkstra’s style. We only construct a set-theoretical model of programs 

where the latter are represented by binary relations (or functions). On the ground of this model, program 

correctness is expressed by inclusions of the form AP ⊆ B or AP ⊆ B. Then, we formulate and prove some 

lemmas which may be used either in proving programs correctness, or in building correct programs. In short, 

these lemmas will be called proof rules or construction rules depending on the way we shall use them. 

In the end, one comment about using single sets of states A or B, rather than pairs (C,¬C), to represent 

three-valued pre- and post-conditions. In fact in using pre- and post-conditions, we are interested only in their 

“domains of satisfaction”, i.e., in the first elements of each pair (C,¬C). For instance, in proving the 

correctness of a program with a precondition: 

1/x > 2                                  (*) 

we are only interested in the behavior of the program whenever our precondition is satisfied. We do not care 

about that behavior in all other cases. If, however, condition (*) would be used as a boolean expression of an 

if-then-else-fi instruction, then it must be represented by a pair of sets (cf. Rule 8.6.1-2) 

8.6 Partial correctness 

Although our primary concern is total correctness of programs, the methods of proving partial correctness are 

of interest too since in the deterministic case, proof of total correctness may be reduced to a proof of partial 

correctness plus a proof of termination (cf. (8.5-2)). In turn, although in the general case termination property 

is not decidable, in many practical cases it may be quite easy to prove.  

8.6.1 Sequential composition and branching 

When defining program correctness proof rules, it is worth distinguishing between two classes of program 

constructors: simple constructors that do not introduce repetition mechanisms and recursive constructors that 

introduce such mechanisms. The former are defined by composition and union of relations; the latter require 

fixed-point equations. From this perspective, iteration is a particular case of recursion.  

The most frequently used simple constructors of programs are sequential composition and branching.  

 

Rule 8.6.1-1 Partial correctness of a sequential composition 

For arbitrary A,D ⊆ S and P,Q : Rel(S,S) the following rule is satisfied: 

there exist conditions B and C such that: 
(1) AP  ⊆ B 

(2) CQ  ⊆ D 

(3) B   ⊆ C 

(4) A(PQ) ⊆ D 

Proof From (1), (2) and the monotonicity of composition 

(AP)Q ⊆ CQ ⊆ D 

hence from the associativity of composition 

A(PQ) ⊆ D.   

To prove the bottom-to-top implication is sufficient to set 
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B = C = AP 

Hence AP ⊆ B and BQ = APQ ⊆ D ■  

 

Rule 8.6.1-2 Partial correctness of if-then-else-fi 

For arbitrary A,D,C,¬C ⊆ S and P,Q : Rel(S,S), if C ∩ ¬C = Ø, then the following rule is satisfied: 

(1) (A ∩ C)P    ⊆ B 

(2) (A ∩ ¬C)Q   ⊆ B 

(3) A if (C, ¬C) then P else Q fi  ⊆  B 

The proof is obvious.  

In the end, three more rules which follow directly from the monotonicity of composition of a set with a 

relation. 

 

Rule 8.6.1-3 Strengthening a partial precondition 

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds: 

AP  ⊆ B 
C    ⊆ A 

CP ⊆ B 

 

Rule 8.6.1-4 Weakening a partial postcondition 

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds: 

AP ⊆ B 
B   ⊆ C 

AP ⊆ C  

 

Rule 8.6.1-5 The conjunction and disjunction of pre- and postconditions 

For every P : Rel(S,S) and any A,B,C,D ⊆ S the following rule holds: 

AP ⊆ B 
CP ⊆ D 

(A∩C)P ⊆ B∩D 
(A | C)P ⊆ B | D 

In the present section we skip the problem of proving properties of atomic components of programs such as, 

e.g., assignments or variable declarations since they are not expressible in the model of abstract binary. This 

issue will be discussed in Sec. 9 where Lingua-V enters the game. 

8.6.2 Recursion and iteration 

In order to formulate proof rules for mutually recursive procedures, we generalize the operation of composition 

of relations with relations and with sets to the case of vectors of respectively relations and sets: 

(P1,…,Pn) (R1,…,Rn) = (P1R1,…,PnRn) 

and analogously for the composition of a relation with sets. In an obvious way, we can also generalize the 

inclusion of sets to the inclusion of vectors: 
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(A1,…,An) ⊆ (B1,…,Bn) means A1 ⊆ B1 and … and An ⊆ Bn 

For simplicity, the inclusion between vectors of sets is denoted by the same symbol as the inclusion of sets. 

In the sequel, vectors of sets and relations as well as operations on them will be written with boldface 

characters.  

A vector of relations R is said to be partially correct wrt the vectors of sets A and B (with appropriate 

numbers of elements) iff A R ⊆ B. The notion of a continuous function is generalized to the case of vectorial 

functions in an obvious way.  

Now we can formulate partial-correctness proof rule in the general case of fixed-points of continuous 

functions on vectors of relations.  

Rule 8.6.2-1 Partial correctness of a vector of relations defined by a fixed-point equation 

For every continuous function Ψ : Rel(S,S)cn ⟼ Rel(S,S)cn, if  R is the least solution of the equation X = 
Ψ.X, then for any A,B : Scn the following rule holds, where Ø = (Ø,…, Ø) is a n-element vector of empty 

relations: 

there exists a family of (vectors of) preconditions {Ai | i ≥ 0}  
and a family of (vectors of) postconditions {Bi | i ≥ 0} such that  

(1) (∀i ≥ 0) A   ⊆ Ai 
(2) (∀i ≥ 0) Ai Ψi.Ø ⊆ Bi 

(3) U{Bi | i ≥ 0}    ⊆ B 

(4) AR      ⊆ B 

Proof Form Kleene’s theorem (Sec. 2.4) 

R = U {Ψi.Ø | i ≥ 0} 

Adding the components of (1) sidewise we obtain 

U (Ai {Ψi.Ø | i ≥ 0} ⊆ U{Bi | i ≥ 0}   

hence from (1) and (3), we have (4). To prove the bottom-up implication, we assume 

Bi = A (Ψi.Ø) for i ≥ 0  and 

Ai = A                                  ■ 

From this rule, we obtain immediately a rule for single recursion, i.e., where n = 1: 

Rule 8.6.2-2 Partial correctness of a relation defined by a fixed-point equation 

For every continuous function Ψ : Rel(S,S) ⟼ Rel(S,S), if R is the least solution of the equation X = Ψ.X, 

then for any A,B ⊆ S the following rule holds: 

there exists a family of preconditions {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that  
(1) (∀i ≥ 0) Ai Ψi.Ø ⊆ Bi 
(2) (∀i ≥ 0)   A ⊆ Ai 

(2) U{Bi | i ≥ 0}  ⊆ B 

(3) AR      ⊆ B 

We can also formulate more specific rules for each particular polynomial function, e.g., for the simple-

recursion constructor as defined in Sec. 8.4. Below two versions of such a rule: 

 

Rule 8.6.2-3 Partial correctness of a relation defined by simple recursion (version 1) 

For any H,T,E : Rel(S,S), if the relation R is the least solution of the equation 

X = HXT | E  
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then for any A,B ⊆ S the following rule holds: 

there exists a family of preconditions {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that  
(1) (∀i ≥ 0) Ai Hi E Ti ⊆ Bi 

(2) (∀i ≥ 0)    A ⊆ Ai 
(2) U{Bi | i ≥ 0}   ⊆ B 

(3) AR       ⊆ B 

The proof follows immediately from Rule 8.6.2-2 and from the fact that, as is easy to prove, 

R = U{Hi E Ti | i ≥ 0} ■ 

The following top-down-implication rule with a stronger assumption may be useful as well: 

 

Rule 8.6.2-4 Partial correctness of a relation defined by simple recursion (version 2) 

For any H,T,E : Rel(S,S), if the relation R is the least solution of the equation 

X = HXT | E  

then for any A,B ⊆ S the following rule holds: 

(1) (∀ Q) (AQ ⊆ B implies A(HQT) ⊆ B) 
(2) AE  ⊆ B 

(3) AR ⊆ B 

 

Proof From (1) and (2) we can prove by induction that for every i ≥ 0: 

A (Hi E Ti) ⊆ B 

and, therefore, by side-wise summation, we get (3). ■ 

 

Rule 8.6.2-5 A Partial correctness of a relation defined by simple recursion (version 3) 

For any H,T,E : Rel(S,S), if the relation R is the least solution of the equation 

X = HXT | E  

then for any A,B ⊆ S the following rule holds: 

(1) AH  ⊆ A 
(2) AE  ⊆ B 
(3) BT  ⊆ B 

(4) AR  ⊆ B 

 

Proof The three inclusions (1), (2), and (3) imply that for any i > 0, we have  

A (Hi E Ti) ⊆ A E Ti ⊆ B Ti ⊆ B. ■  

Now let us denote by 

while (C, ¬C) do P od 

the least solution of the equation 

X = [C]PX | [¬C]. 
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Setting H = [C]P, T = [S] and E = [¬C] from both general rules we can draw rules for while-do-od iteration: 

Rule 8.6.2-6 Partial correctness of while-do-od loop (version 1) 

For every relation P : Rel(S,S), any disjoint C, ¬C ⊆ S, and any A,B ⊆ S the following rule holds: 

there exists a family of postconditions {Bi | i ≥ 0} such 

that 
(1) (∀ i ≥ 0) A ([C]P)i [¬C]  ⊆ Bi 
(2) U{Bi | i ≥ 0}      ⊆ B 

(3) A while (C, ¬C) do P od ⊆ B 

 

Rule 8.6.2-7 Partial correctness of while-do-od loop (version 2) 

For every relation P : Rel(S,S), any disjoint C, ¬C ⊆ S, and any A, B ⊆ S the following rule holds: 

(1) (∀ Q) AQ ⊆ B implies A [C]QP ⊆ B 
(2) A[¬C]   ⊆ B 

(3) A while (C, ¬C) do P od ⊆ B 

■ 

In the literature, the following rule is also well known, although it is usually formulated for the case of two-

valued predicates, i.e. where C | ¬C = S  

Rule 8.6.2-8 Partial correctness of while-do-od loop (version 3) 

For every relation P : Rel(S,S), for any disjoint C,¬C ⊆ S, any A, B ⊆ S, the following rule is satisfied: 

there exists N ⊆ S (called loop invariant) such that: 
(1) (N ∩ C) P  ⊆ N 

(2) A     ⊆ N 

(3) N [¬C]   ⊆ B 

(4) A while (C, ¬C) do P od ⊆ B 

■ 

Proof Let (1) – (3) be satisfied. Since 

(N ∩ C) P = N [C] P 

from (1) we can prove by induction: 

N([C]P)i ⊆ N for all i ≥ 0 

Therefore and from (2) 

A([C]P)i ⊆ N  for all i ≥ 0 

hence from (3) 

A([C]P)i[¬C] ⊆ N[¬C] ⊆ B  for all i ≥ 0 

In summing these inclusions sidewise, we get (4). Now assume that (4) is satisfied and let us set: 

(5) N = A([C]P)* 

Therefore and from (4) we get N[¬C] ⊆ B, hence (3). In turn (5) is equivalent to 

N = A | A([C]P)+, 

hence (2). To prove (1) notice that: 

(N∩C)P = N[C]P = A[C]P | A([C]P)+[C]P = A([C]P)+ ⊆ N  ■ 
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8.7 Weak total correctness 

Rules for weak total correctness are used to prove that if an input state of a program satisfies a precondition, 

then at least one execution of that program will terminate with postconditions satisfied. If a program is 

deterministic, then weak total correctness coincides with clean total correctness which means that the unique 

execution of a program terminates with a state satisfying a postcondition. 

8.7.1 Sequential composition and branching 

Rule 8.7.1-1 Weak total correctness of a composition 

For any A,D ⊆ S and P,Q : Rel(S,S) the following rule holds: 

there exist conditions B and C such that  
(1) A ⊆ PB 

(2) C ⊆ QD 

(3) B ⊆ C 

(4) A ⊆ (PQ)D 

Proof. From (1), (2) and (3) we immediately have: 

A ⊆ PB ⊆ PC ⊆ P(QD) = (PQ) D. 

Now assume that A ⊆ (PQ)D, which means that A ⊆ P(QD). Assuming B = C = QD we get (1) and (2). ■ 

 

Rule 8.7.1-2 Weak total correctness of if-then-else74 

For any A,B,C,¬C ⊆ S and P,Q : Rel(S,S), if C ∩ ¬C = Ø, then the following rule is satisfied: 

(1) A ∩ C   ⊆ PB 

(2) A ∩ ¬C ⊆ QB 

(3) A    ⊆ C | ¬C 

(4) A  ⊆ if (C, ¬C) then P else Q fi B 

Proof. Let (1) – (3) be satisfied. Then: 

[C] (A ∩ C)     ⊆ [C] PB 
[¬C] (A ∩ ¬C) ⊆ [¬C] QB 

Adding the inclusions sidewise: 

[C] (A ∩ C)  | [¬C] (A ∩ ¬C) ⊆ [C] PB | [¬C] QB = ([C]P | | [¬C] Q) B 

The following equalities are also true 

[C] (A ∩ C) = A ∩ C 

and analogously for ¬C. Hence and from (3) 

[C] (A ∩ C)  | [¬C] (A ∩ ¬C) = (A ∩ C)  | (A ∩ ¬C) = A  

and finally 

(4) A  ⊆ [C] PB | [¬C] QB  

In turn, (4) implies A ⊆ C | ¬C, and from (4) and the fact that C and ¬C are disjoint, follow (1) and (2). ■ 

 

74 Notice that in the case of two-valued predicates, condition (3) would not be necessary, since in that case C | ¬C = S. 
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Observe the assumption (3) in our rule. In the case of classical predicates where C | ¬C = S, this condition 

is a tautology.  

In the end, three more rules for pre- and postconditions analogous to the respective rules for partial 

correctness.  

 

Rule 8.7.1-3 The strengthening of a weak total precondition 

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds: 

A ⊆ PB 
C ⊆ A 

C ⊆  PB 

 

Rule 8.7.1-4 The weakening of a weak total postcondition 

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds: 

A ⊆ PB 
B ⊆ C 

A ⊆ PC 

 

Rule 8.7.1-5 The conjunction and disjunction of conditions 

For every P : Rel(S,S) and any A,B,C,D ⊆ S the following rule holds: 

A ⊆ PB 
C ⊆ PD 

A∩C ⊆ P(B∩D) 
A | C ⊆ P(B | D) 

The proofs of the last three rules follow directly from the definitions of total correctness. Our last rule in this 

section concerns resilient conditions. 

 

Rule 8.7.1-6 Propagation of resilient conditions 

For every P : Rel(S,S) and any A,B,C ⊆ S the following rule holds: 

(1) A   ⊆ PB 
(2) CP ⊆ C 

A∩C ⊆ P(B∩C) 

In this rule, C is said to be resilient to P, because its satisfaction is not violated by P. This rule, although quite 

simple, has a practical value, since it will be applied in all situations where a certain property of a state once 

established, remains in force till the end of the execution of a program. E.g., once we declare a variable it 

remains declared during the whole (remaining) lifetime of the hosting program. The proof of this rule is the 

following: 

From (1) by Rule 8.7.1-3 we have A∩C ⊆ PB. Consequently, if a : A∩C then there exists a state b such 

that a P b and b : B. At the same time, since a : C, then by (2) b : C, hence b : B∩C.        ■ 

8.7.2 Recursion and iteration 

Similarly, as in the case of partial correctness, we start from the case of a general recursive operator. 
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Rule 8.7.2-1 Weak total correctness of a vector defined by a general fixed-point equation 

For every continuous function Ψ : Rel(S,S)cn ⟼ Rel(S,S)cn, if  R is the least solution of  X = Ψ.X, then the 

following rule holds, where Ø = (Ø,…,Ø): 

there exists a family of preconditions  {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that  
(1) (∀ i ≥ 0) Ai  ⊆ (Ψi.Ø)Bi 
(2) A     ⊆ U{Ai | i ≥ 0} 
(3) (∀ i ≥ 0) Bi  ⊆ B 

(4) A ⊆ RB 

Proof  If R is the least fixed point of Ψ, then from the continuity of Ψ  

(4) R = U{Ψi.Ø | i ≥ 0} 

Adding sidewise inclusions (1) we have 

U {Ai | i ≥ 0} ⊆ U ({Ψi.Ø | i ≥ 0}  Bi)  

Hence from (2) and (3), we have (4). Now assume that A ⊆ RB which means that  

A ⊆ U{Ψi.Ø | i ≥ 0} B 

Let for i ≥ 0 

Ai = (Ψi.Ø) B and  

Bi = B 

Then obviously (1), (2), and (3) are satisfied. ■ 

From this rule for n = 1, we immediately conclude the next rule 

Rule 8.7.2-2 Weak total correctness of a relation defined by a general fixed-point equation 

For every continuous function Ψ : Rel(S,S) ⟼ Rel(S,S), if  R is the least solution of an equation X = Ψ.X, 

then the following rule holds: 

there exists a family of preconditions  {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that 

(1) (∀ i ≥ 0) Ai  ⊆ (Ψi.Ø)Bi 
(2) A     ⊆ U {Ai | i ≥ 0} 

(3) (∀ i ≥ 0) Bi  ⊆ B 

(4) A ⊆ RB 

 

Rule 8.7.2-3 Weak total correctness of a relation defined by simple recursion (version 1) 

If relation R is the least solution of the equation X = H X T | E then the following rule holds: 

there exists a family of preconditions {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that 
(1) (∀ i ≥ 0) Ai  ⊆ (Hi E Ti) Bi  
(2) A     ⊆ U {Ai | i ≥ 0} 
(3) (∀ i ≥ 0) Bi  ⊆ B 

(4) A ⊆ RB 
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Proof  Define  

Ψ.X = H X T | E 

In this case 

Ψ0.Ø = E 

Ψ1.Ø = Ψ.(Ψ0.Ø) = H (Ψ0.Ø) T | E = H E T | E 

Ψ2.Ø = Ψ.(Ψ1.Ø) = H (Ψ1.Ø) T | E = H (Ψ1.Ø) T | E = H2 E T2 | H1 E T1 | E 

Therefore, by induction, for any n ≥ 0 

Ψi.Ø = U { Hi E Ti | i=1,2,…n} | E = = U { Hi E Ti | i=0,1,…n} 

Now, by (1) and the monotonicity of composition of a relation with a set, we have for every i ≥0 

Ai  ⊆ Hi E Ti Bi ⊆ (U {Hi E Ti | 1=0,...,n} ) Bi  ⊆ (Ψi.Ø) Bi 

From this inclusion together with (2), (3) and Rule 0-2, we conclude  

A ⊆ RB 

In turn, if the inclusion is satisfied, then we set 

Ai = (Ψi.Ø) B 

Bi = B 

With this settings (1) and (3) are obviously satisfied, and (2) is satisfied because 

A ⊆ RB ⊆ U{ Ψi.Ø | i≥ 0} B = U{ (Ψi.Ø) B | i≥0} = U {Ai | i ≥ 0}  ■ 

 

Rule 8.7.2-4 Clean total correctness of a function defined by simple recursion (version 2) 

If  F is the least solution of the equation X = HXT | E where H, T, and E are functions and the domains of  H 

and E are disjoint, then the following rule holds: 

(1) (∀ Q) ( AQ ⊆ B implies A(HQT) ⊆ B ) 
(2) AE  ⊆ B  
(3) A  ⊆ FS 

(3) A ⊆ FB 
 

Proof As is easy to prove, for any H, T, and E the least solution of our equation is  

U{ Hn E Tn | n≥0 } 

and if additionally H, T, and E are functions and the domains of H and E are disjoint, then this solution is a 

function. Now, by (1), (2) and the Rule 8.6.2-4, AF ⊆ B, i.e., F is partially correct wrt A and B. Since (3) 

means that F is total on A, by Theorem 8.5-1 we can claim that it is totally correct wrt A and B. ■ 

From Rule 8.7.2-3 we can immediately derive our first rule about while-do-od instruction based on the 

observation that while (C, ¬C) do P od is the least solution of the equation 

X = [C]PX | [¬C]. 

Let then R be the least solution of this equation, i.e., 

R = ([C]P)*[¬C]. 
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Rule 8.7.2-5 Clean total correctness for nondeterministic while-do-od  

there exists a family of preconditions {Ai | i ≥ 0}  
and a family of postconditions {Bi | i ≥ 0} such that 
(1) (∀ i ≥ 0) Ai  ⊆ ([C]P)i[¬C] Bi    
(2) A     ⊆ U {Ai | i ≥ 0} 
(3) (∀ i ≥ 0) Bi  ⊆ B 

(4) A ⊆ RB 

 

The most commonly known version of a rule for while-do-od concerns a deterministic case, and does not 

require the construction of two infinite families of conditions. It is also based on a well-known method of 

proving the halting property of a loop. First, we introduce two auxiliary concepts.  

We say that a function F : S → S has limited replicability property in a set N ⊆ S, if there exists no infinite 

sequence of the form: s, F.s, F.(F.s),… in N.  

A partially ordered set (U, >) is said to be well-founded, if there is no infinite decreasing sequence in it, 

i.e., a sequence u1 < u2 < … The following obvious lemma is useful in proving the limited replicability of a 

function F : S → S. 

Lemma 8.7.2-1 If there exists a well-founded set (U, <) and a function K : N ⟼ U such that for any a : N, 
F.a = !, F.a : N and 

K.a > K.(F.b)  

then F has limited replicability in N. ■ 

Now we can formulate our rule.  

 

Rule 8.7.2-6 Clean total correctness of a deterministic while-do-od loop  

For any function   F : S → S, any A,B,N ⊆ S, and any disjoint C,¬C ⊆ S 

(1) A    ⊆ N 

(2) N    ⊆ C | ¬C 

(3) N ∩ ¬C  ⊆ B 

(4) N ∩ C  ⊆ FN     (clean total correctness of F) 

(5) [C]F has limited replicability in N 

(6) A ⊆ while (C,¬C) do F od B 

Proof Assume that (1), (2), (3) are satisfied but the inclusion 

N ⊆ ([C]F)*[¬C]S. 

does not hold. In that case, there exists s0 : N, that does not belong to  

([C]F)*[¬C]S = ([C]F)+[¬C]S | ¬C, 

and therefore s0 does not belong to ¬C. From there, by (3), s0 : N∩C, and therefore by (4), there exists s1 
such that [C]F.s0 = s1 and s1 : N. Therefore by (3)  

s1 : C | ¬C.  

Now, s1 cannot belong to ¬C, since then s0 would belong to  

[C]F[¬C]S 

which is a subset of ([C]F)*[¬C]S. Reasoning in this way, we could prove by induction that for any n ≥ 0 

there exists a sequence si : i = 0,1,…n such that s0 : N and 
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si [C]F si+1 and si : N for i = 0,1,…,n 

Since F is a function, this implies the existence of an infinite sequence 

si [C]F si+1 and si : N for i = 0,1,… 

which contradicts (5).                             ■ 
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9 VALIDATING PROGRAMMING 

Generally speaking, by validating programming, we shall mean such program creation techniques that ensure 

clean total-correctness of programs wrt their specifications. In our approach, programs and their specifications 

will constitute syntactic components of metaprograms. This technique was already announced in Sec. 1.1 and 

its abstract mathematical foundations were described in Sec. 8. The present section is devoted to the techniques 

of developing correct metaprograms written in an extended programming language, Lingua-V, which 

includes Lingua.  

An approach that gave rise to validated programming was proposed by A.Blikle in papers [20], [21], and 

[22] published at the turn of the decades 1970s and 1980s. In writing these papers, he concluded that to create 

a language with rules that guarantee program correctness, one has to equip this language with mathematical 

semantics. This observation provoked his further research described in [25], [26], [27] and [34], and now 

continued in our book.  

9.1 Languages of validating programming 

From a pure logical perspective metaprograms may be seen as theorems that claim the correctness of programs 

that they (syntactically) include. An example of such a metaprogram written in Lingua-V, may be the 

following: 

pre x,k is integer and k > 0: 
x := 0; 
asr x = 0 rsa 
while x+1 ≤ k do x := x+1 od 

post x = k  

Metaprograms are our ultimate targets, and therefore, programmers in Lingua will, in fact, develop 

metaprograms in Lingua-V. This language will include five major syntactic categories: 

1. Programs — that are just programs in Lingua. 

2. Conditions ― that express properties of states; their denotations are three-valued partial predicates on 

states, and they include all boolean expressions of Lingua. 

3. Assertions — that are instructions aborting program executions, if an indicated condition is not 

satisfied. Syntactically assertions are of the form asr con rsa, where con is a condition. 

4. Specified programs ― that are programs with nested assertions. 

5. Metaprograms — that are specprograms with pre- and postconditions. 

Lingua-V is, in a sense, a metalanguage since it is used to talk about programs in Lingua. The denotations of 

metaprograms are just classical truth values tt or ff, which means that metaprograms are simply correct or not. 

An important consequence of this fact is that at the level, where we talk about the development of correct 

metaprograms, we use classical two-valued logic. 

In developing correct programs, we remain in the world of classical two-valued logic. 
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The fact that in Lingua-V we use 3-valued conditions may lead to a false conclusion that the development of 

correct metaprograms must be carried in a 3-valued logic75. Note, however, that our conditions constitute just 

a category of expressions, which only “happen to look like” logical formulas, but at the level of program 

development they are  not.  

To formulate the rules of constructing correct metaprograms, we shall need yet another metalevel. We 

denote it by Lingua-MV and assume that it includes Lingua-V plus the following syntactic categories: 

1. Patterns — that describe sets of elements of Lingua-V, e.g. a pattern of a metaprogram may be of the 

form pre prc : spr pos poc, where prc and poc are metavariables running over conditions and spr is 

a metavariable running over specified programs.  

2. Metaconditions — that describe properties of conditions or their patters, i.e. that one condition is 

stronger than another one. 

3. Metaprograms — that describe properties of programs or of their patterns.  

4. Metaprogram construction rules that belong to two categories: 

a. nuclear rules — assuring that metaprograms matching certain patterns are correct, 

b. implicative rules — assuring that if some metaconditions and/or metaprograms are true/correct, 

that some other metaprograms are correct.  

An example of a nuclear rule may be the following: 

pre (ide is free) and (tex is type) 
let ide be tex with yex tel                         (9.1-1) 

post var ide is tex with yex 

It expresses the fact that for any  

ide : Identifier, 
tex : TypExp, 
yex : YokExp 

metaprograms matching pattern (9.1-1) are correct. From this rule we may derive the following concrete 

correct metaprogram: 

pre (length is free) and (real is type) 
let length be real with value > 0 tel 

post var length is real with value > 0 

In turn, an example of an implicative rule may be the following: 

pre prc : spr post poc     metaprogram pattern 

poc  poc-1        metacondition pattern 

pre prc : spr post poc-1    metaprogram pattern 

This rule ensures that for any prc, spr, poc and poc1 (of appropriate categories) if both propositions above 

the line are true, then the metaprogram below the line is correct. It is to be emphasized that in our approach 

every construction rule is a theorem — rather than an axiom of a logic of programs — and therefore must be 

proved. In our approach, we do not develop any “logic of programs” as in the approaches of C.A.R. Hoare 

[55], [4], [5] or E. Dijkstra [44], [45], or as in algorithmic logic [10]. 

To simplify our wording we shall informally identify patterns with syntactic elements that they represent. 

E.g. we will say that (9.1-1) is a metaprogram, rather than a pattern of a metaprogram.  

 

75 Readers interested in an analysis of a variety of 3-valued logics that may be based on our 3-valued predicates, are 
referred to [58]. 
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To conclude this section let’s formulate some remarks about the degree of formalization of our linguistic 

levels: 

1. Lingua is a programming languages, which has been fully formalized, i.e. it has a formally defined 

syntax and semantics. So far it hasn’t been completely described — some definitions of its elements 

have been skipped — but its definition must be completed before the implementation of the language. 

2. Lingua-V is a metalanguage that we shall not formalize at the moment but, again, it should be 

formalized and completed in the future when it comes to the development of a computer support for 

the development of correct metaprograms (see Sec. 9.6.1). 

3. The situation with Lingua-MV is analogous. We won’t formalize it now, but hopefully some of our 

readers will do it in the future. 

4. MetaSoft is our meta metalanguage that we use to talk about all our languages. This metalanguage 

will not be formalized. 

Although Lingua was developer from denotations to syntax, Lingua-V and Lingua-MV will be developed 

in a converse order since in this case: 

• we are not formalizing their definitions, 

• we are developing them by extending an existing language Lingua. 

It should be mentioned at the end that there is one more language to be formalized in the future — a language 

for the development of denotational definitions of programming languages. So far Lingua has been defined 

in a non-formalized MetaSoft but in the future one may think of developing a computer system supporting 

language designers developing denotational definitions of new languages. In such a case a new metalanguage 

will be necessary. We briefly discuss this issue in Sec. 9.6.2. 

9.2 Conditions 

9.2.1 General assumptions about conditions 

Denotationally conditions represent partial functions from states to boolean values or errors: 

cod : ConDen = WfState → BooValE             the denotations of conditions 

For future use we introduce the following notations for truth values 

tv  = (tt, (‘boolean’)) 
fv  = (ff, (‘boolean’))  

By 

con : Condition = … 

we shall denote the (colloquial) syntactic domain of conditions. As metavariables running over Condition we 

shall also use 

• prc to denote preconditions, 

• poc to denote postconditions. 

The syntactic domain of conditions of a “practical language” may be very large, and strongly dependent on 

the domain of applications of such a language. Therefore, we shall not attempt to define a “complete” language 

of conditions. Instead we only list basic assumptions about this language, and we show its main categories.  

Our first assumption is that the domain of conditions is closed under 3-valued logical connectives and 

quantifiers, i.e.: 

(con1 and con2) , (con1 or con2) , (not con) , (∀ ide : con) | (∃ ide : con) 
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belong to Condition for any con1, con2, con : Conditions and ide : Identifier. To gain the commutativity 

of conjunction and disjunction we assume that the boolean constructors are defined in the Kleene’s style rather 

than in the style of McCarthy’s, (Sec. 2.10)76. We also assume that we may skip parentheses in a usual way.   

The semantics of conditions will be denoted be square brackets [ ], and besides we also introduce the 

concept of a truth domain of a condition: 

[con] : WfState → BooValE                     semantics of conditions 

{con} = {sta | [con].sta = tv}                truth domains of a conditions 

From now on we shall use square brackets to denote the semantics of all components of metaprograms, 

assuming that a context will always indicate which semantics we mean. We assume further that conditions 

should be error transparent (cf. Sec. 2.9), i.e., that for any condition con 

if is-error.sta then [con].sta = error.sta. 

In the end we assume that Condition includes a special condition NF that is never false, i.e., such that 

[NF].sta =  
 is-error.sta ➔ error 
 true    ➔ tv 

Note that we can’t introduce a conditions that is always true, because it would be not error transparent.  

9.2.2 Value-oriented conditions 

Value-oriented conditions describe the properties of values assigned to variables and attributes in states. We 

assume that syntactically they include all value expressions with boolean values, i.e. boolean expressions, 

such as, e.g.,  

x+1 < 2*z and z > 0,  

but we assume that their boolean connectives are understood in Kleene’s way (cf. Sec. 9.2). Value-oriented 

conditions may also include conditions that are not boolean expressions. Typical examples in this category 

are equality conditions of the form 

vex-1 = vex-2. 

Note that at the level of boolean expressions, we usually do not allow comparisons of structural values, such 

as e.g., lists, arrays, objects or databases, since this might be computationally too expensive. However, we 

allow such comparisons at the level of conditions, because in this case we do not check (compute) the 

equalities, but we only use them to express the properties of programs.  Another example of a condition that 

is not a boolean expressions may be 

increasingly ordered real (ide) 

This condition is satisfied if ide points to a list of real numbers ordered increasingly  

9.2.3 Cov-oriented conditions 

The mechanism of type-covering relations imposes a necessity of checking types’ compatibilities in four 

following situations: 

1. when a value is assigned to a reference by an assignment instruction, 

2. when a value of an actual parameter is assigned to the reference of a formal parameter by the mechanism 

of entering a procedure call, 

3. when a reference of an actual parameter is assigned to the corresponding formal parameter by the 

mechanism of entering a procedure call, 

 

76 In building the denotations of boolean value-expressions we still use McCarthy’s logical connectives.  
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4. when a reference of a formal parameter is passed (back) to the corresponding actual parameter.  

In cases 1., 2. and 3 we refer to the current covering relation, but in case 4., i.e., at the exit of a procedure, we 

have to refer to the covering relation of a call-time state (Sec. 6.6.3.5).  

To illustrate this case assume that at the exit of an imperative-procedure call we have a local terminal state 

(see Sec. 6.6.3) 

lt-sta = ((lt-cle, lt-pre, lt-cov), lt-sto) 

with the following bindings of a formal reference-parameter ide-fr:  

ide-fr → (tok, (typ-r, yok, ota)) → (dat, typ-v). 

Since lt-sta is well-formed, the following relationship is satisfied. 

typ-r TTA.lt-cov typ-v.                               (9.2.3-1) 

Now, the mechanism of returning the reference of ide-fr to an actual reference-parameter ide-ar is activated, 

and creates a global terminal state 

gt-sta = ((gt-cle, gt-pre, gt-cov), gt-sto). 

with the following bindings: 

ide-ar → (tok, (typ-r, yok, ota)) → (dat, typ-v). 

Since the operation of returning parameters must guarantee the well-formedness of gt-sta, we have to check 

if the following relationship is satisfied: 

typ-r TTA.gt-cov typ-v.   

However, as we have seen in Sec. 6.6.3.5, the global terminal covering relation cov-gt is equal to a call time 

covering relation cov-ct, which means that we must ensure the relationship 

typ-r TTA.ct-cov typ-v,                          (9.2.3-2) 

at the exit of the body of our procedure. Note in this place that lt-cov may be larger than ct-cov — since it 

might have been enriched during the execution of the procedure’s body — and therefore (9.2.3-1) may be 

satisfied, whereas (9.2.3-2) is not. 

To check the satisfaction of  (9.2.3-2) at the exit of the procedure’s body in the rule of the development of 

a procedure (Rule 9.4.6.3-1), we have to express this fact in the postcondition of  the body, hence as a property 

of the local terminal state. But in this state we do not “have access” to the call-time relation. Consequently, 

we have to somehow “memorize” ct-cov in the syntax of conditions.  

To cope with this problem we first introduce a concept of cov-expressions that evaluate to covering 

relations: 

coe: CovExp = 
   (TypExp , TypExp)     | 
   (TypExp , TypExp) ; CovExp 

Their semantics is the following: 

[coe] : WfState  ⟼ CovRel | Error 

We skip its obvious definition, assuming that an error message is signalized in three situations: 

1. if some involved type expressions evaluate to errors, 

2. if in a pair of types one is a data type and the other is an object type, 

3. if an object type is not a name of a declared class. 

Now, to express the satisfaction of (9.2.3-2) as a property of a local terminal state, we introduce two new 

categories of conditions: 

coe is current                      coe evaluates to the current covering relation 

fpa well-valued in coe           references of formal parameters fpa accept their values wrt coe 
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The denotation of the first condition is the following:  

[coe is current].sta = 
 is-error.sta  ➔ error.sta 
 let 
  c-cov       = [coe].sta 
  ((cle, pre, cov), sto) = sta 
 c-cov : Error ➔ c-cov 
 c-cov ≠ cov ➔ ‘current cov-relation not confirmed’ 
 c-cov = cov ➔ tv 

To define the denotation of the second one we need an auxiliary function  

list-of-ide : ForPar ⟼ LisOfIde 

that given a (list of) formal parameter, i.e., a syntactic element, e.g.,: 

x, y, z as real, n, m, p as integer 

returns the list of identifiers 

x, y, z, n, m, p 

(cf., a similar construction in Sec. 6.6.3.3). We skip a formal definition of this function.  

[fpa well-valued in coe].sta = 
 is-error.sta           ➔ error.sta 
 let 
  cov      = [coe].sta 
  (ide-1,…,ide-n) = list-of-ide.fpa 
 cov : Error            ➔ cov 
 let 
  (env, (obn, dep, ota, sft, ‘OK’)) = sta 
 obn.ide-i = ?           ➔ ‘variable not declared’  for i = 1;n 
 dep.(obn.ide-i) = ?         ➔ ‘variable not initialized’  for i = 1;n 
 (∀i)(obn.ide-i VRA.cov dep.(obn.ide-i)) ➔ tv 
 true              ➔ fv 

Note that the acceptance of values by corresponding references is checked wrt the type-covering relation 

indicated by coe which needs not coincide with the current relation carried by sta. 

Given these new categories of conditions we can express the fact77 that at the exit of procedure body formal 

reference parameters are well-valued wrt a call-time covering relation:  

prc-call   coe is current      and 

poc-body  fpa-r well-valued in coe 

This technique will be used in Sec. 9.4.6.3 where we formulate a rule for the creation of procedure declarations 

that lead to correct procedure calls.  

Our last condition in this section concerns the enrichment of a covering relation by a new pair of types. We 

recall (cf. Sec. Sec. 5.4.2 and 6.7.5) that two types may be added to a covering relation if: 

1. they are different, 

2. they do not belong to this relation, 

3. they are either both data types or both object types, 

4. if they are object types, i.e., identifiers, then they have to be the names of declared classes. 

The following condition checks if a given pair of types can be added to a current covering relation: 

 

77 This fact is a metacondition from the level of Lingua-MV (see Sec. 9.1). 
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[ consistent(tex-1, tex-2) ].sta = 
 is-error.sta         ➔ error.sta 
 [tex-i].sta : Error       ➔ [tex-i].sta  for i = 1,2 
 let 
  typ-i        = [tex-i].sta   for i = 1,2 
  ((cle, pre, cov), sto)  = sta 
 typ-1 : DatTyp and typ-2 : ObjTyp ➔ ‘types not comparable’ 
 typ-2 : DatTyp and typ-1 : ObjTyp ➔ ‘types not comparable’ 
 (typ-1, typ-2) : cov       ➔ ‘types already in covering relation’ 
 typ-1, typ-2 : DatTyp      ➔ tv 
 cle.typ-i = ?         ➔ ‘object types must be declared’ for i = 1,2 
 true            ➔ tv 

9.2.4 Value-, type- and reference-oriented conditions 

Conditions of this category describe, except (11), properties of output states of non-procedural categories of 

declarations. Condition (11) does not belong to this group, but is listed here because it is a necessary 

prerequisite for all declarations to execute cleanly. Below we show some typical examples of conditions 

associated to values, types and references, excluding these of Sec. 9.2.3: 

(1) ty-ide is type in cl-ide,                ty-ide is declared as type constant in class cl-ide 
(2) ide is tex,                ide is a type constant pointing to a type indicated by tex 
(3) att at-ide is tex with yex in cl-ide as pst,       at-ide is declared with tex and yex in class cl-ide…  
(4) var ide is tex with yex,             ide is a declared variable of type tex and yoke yok 
(5) rex is reference,                reference expression rex evaluates cleanly 
(6) vex is value,                    value expression vex evaluates cleanly 
(7) tex is type,                    type expression tex evaluates cleanly 
(8) cli is class,             cli is either empty-class or an identifier of a declared class  
(9) ide child of cli,     ide is an identifier of a declared class which is a child of class indicated by cli 
(10) tex1 covers tex2,                   tex1 and tex2 evaluate cleanly and… 
(11) ide is free                         ide has not been declared 

Below we define only two of these categories of conditions since the remaining ones seem obvious.  

[ att at-ide is tex with yex in cl-ide as pst ].sta = 
 is-error.sta        ➔ error.sta 
 [tex].sta : Error       ➔ [tex].sta 
 let 
  ((cle, pre, cov), sto) = sta 

typ      = [tex].sta 
  yok      = [yok]      we recall that the denotation of a yoke expression is a yoke 

 cle.cl-ide = ?        ➔ ‘class unknown’ 
 let 
  (cl-ide, tye, mee, obn) = cle.cl-ide 
 obn.at-ide = ?       ➔ ‘attribute unknown’ 
 let 
  (tok, (at-typ, at-yok), at-ori) = obn.at-ide 
 typ ≠ at-typ        ➔ ‘types not compatible’ 
 yok ≠ at-yok        ➔ ‘yokes not compatible’ 
 pst = ‘private’ and ar-ori ≠ cl-ide ➔ ‘privacy status not adequate’ 
 pst = ‘public’ and ar-ori ≠ $  ➔ ‘privacy status not adequate’ 
 true           ➔ tv 

Note that in yok ≠ at-yok we compare two functions, which is not computable, but this fact does not matter, 

since conditions are not evaluated. 
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Proceeding to the definition of (9) we recall that a child class named ch-ide is a child of a parent class 

named pa-ide, if it inherits all signatures and all attributes of the parent class.  

[ch-ide child of pa-ide].sta = 
 is-error.sta      ➔ error.sta 
 let 
  ((cle, pre, cov), sto) = sta 
 cle.pa-ide = ?     ➔ ‘parent class unknown’ 
 cle.ch-ide = ?     ➔ ‘child class unknown’ 
 let 
  pa-cla = cle.pa-ide 
  (ch-ide, [ ], fu-mee, ch-obn)   = make-funding-class.ch-ide. pa-cla  (see Sec. 6.7.3) 

  (ch-ide, ch-tye, ch-mee, ch-obn)  = cle.ch-ide 
 fu-mee /⊆ ch-mee     ➔ ‘signatures not compatible’ 

dom.pa-obn /⊆ dom.ch-obn ➔ ‘attributes not compatible’ 
 true          ➔ tt 

At the end a comment about condition (6). For it to be satisfied, all variables and attributes in vex must be 

declared and initialized. This is why (6) has been classified as declaration-oriented condition. It is also worth 

noticing that the satisfaction of (6) implies that the evaluation of vex won’t generate an error message, e.g., 

an overflow.  

9.2.5 Procedure-oriented conditions 

Conditions of this category describe the effects of procedure declarations (operator @ is defined in Sec. 9.2.7). 

(1) pr-ide (val fpv ref fpr) begin body end imperative in cl-ide, 
(2) fu-ide  (val fpv ref tex) begin body return vex end functional in cl-ide, 
(3) ob-ide (val fpv ref ob-ide) begin body end objectional in cl-ide, 
(4) procedure cl-ide.pr-ide opened  
(5) (pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with cl-ide) @ con  

The denotation of (1) is the following: 

[pr-ide (val fpc-v ref fpc-r) begin body end imperative in cl-ide].sta = 
 is-error.sta           ➔ error.sta 
 let 
  ((cle, pre, cov), sto) = sta 
 cle.cl-ide = ?           ➔ ‘class unknown’ 
 let 
  (cl-ide, tye, mee, obn) = cle.cl-ide 
 mee.pr-ide = ?          ➔ ‘pre-procedure unknown’ 
 let 

declared-pre-proc   = mee.pr-ide 
  expected-pre-proc  = create-imp-pre-pro.([fpd-v], [fpd-r], [body]) 
 declared-pre-proc ≠ expected-pre-proc  ➔ fv 
 true              ➔ tv 

Our condition claims three facts: 

1. cl-ide is a name of a declared class,  

2. pr-ide is a name of a procedure in this class, 

3. pre-procedure pointed by pr-ide is equal to a pre-procedure that would be created by a declaration 

proc pr-ide (val fpc-v, ref fpc-r) begin body end. 

Note that in 3. we do not claim that the body of the declared pre-procedure is body, but that the declared 

procedure (a denotational element) is identical with a procedure generated by proc pr-ide (val fpc-v, ref fpc-
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r) begin body end. It is, therefore, not a claim about syntax, but about its “denotational effect”. This condition 

is also not computable. The definitions for cases (2) and (3) are analogous. 

Condition (4) claims that pre-procedure pr-ide declared in class cl-ide gave rise — due to the opening 

declaration — to a procedure assigned to procedure indicator (cl-ide, pr-ide) in the procedure environment of 

the current state. We skip an obvious definition. 

The last category of conditions has an algorithmic character (see Sec. 9.2.7), and will be used to describe 

the effect of an action of passing actual parameters to formal parameters in a procedure call. In its definition 

we shall refer to function pass-actual defined in Sec. 6.6.3.4. To define this condition we only need to define 

its imperative component: 

[ pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with cl-ide ] : WfState ⟼ WfState 

[ pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with cl-ide ].sta = 
 is-error.sta  ➔ sta ◄ error.sta 
 let 
  (env, sto)  = sta 
  new-sto  = pass-actual.(fpa-v, fpa-r, apa-v, apa-r, cl-ide).env.sto 
 is-error.new-sto ➔ sta ◄ error.new-sto 
 true     ➔ (env, new-sto) 

We recall that cl-ide is a name of a class. 

A state that satisfies condition (5) guarantees that starting with it, the execution of pass-actual will 

terminate cleanly, and the output state will satisfy condition con. We shall use this condition in Sec. 9.4.6.3, 

where we formulate a rule for constructing correct procedure calls.  

9.2.6 Assertions and specified programs 

As we have already seen in Sec. 8, the rules of the development of correct metaprograms are lemmas which 

guarantee the correctness of some metaprograms provided that their components were correct. In an abstract 

case where programs are represented by binary relations between (abstract) states, correctness of programs 

was expressed by pre- and postconditions. However, at the level of a programming language sometimes we 

may need to talk not only about the properties of input and output states of programs, but also about properties 

of their intermediate states.  

We shall start from the introduction of a syntactic category of assertions whose domain is defined by the 

following equation: 

asr : Assertion = asr Condition rsa 

The semantic of assertions is the following: 

[asr] : WfState → WfState 
[asr con rsa].sta =  
 is-error.sta   ➔ sta 

[con].sta = ?   ➔ ? 
[con].sta : Error   ➔ sta ◄ [con].sta 
[con].sta = fv   ➔ sta ◄ ‘assertion not satisfied’ 

 true      ➔ sta 

Note that an error message will be generated by assertions in two situations: 

1. when the value of the condition is an error, 

2. when the condition is not satisfied. 

An assertion may be regarded as a filter that is transparent for states satisfying the included condition, and 

otherwise aborts the execution of a program.  
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Another new concept that we shall need in the future will be used in building rules for the development of 

class declarations (Sec. 9.4.4.2). By an anchored class transformer we mean an imperative element with the 

following syntactic domain: 

act : AncClaTra = ClaTra in Identifier                

and the following semantics: 

[ctr in ide] : WfState → WfState 
[ctr in ide] = [ctr].ide. 

The identifier in this structure is called an anchor. We recall that the denotations of class transformers 

constitute the following domain: 

ctd : ClaTraDen = Identifier ⟼ WfState → WfState. 

which means that a transformer, when given a (class) identifier, becomes a state-to-state function, i.e., a 

denotation of an anchored class transformer.  

Now we are ready to define specified programs and their specified components. Intuitively they are 

imperative components of programs with nested assertions. Below we define the corresponding syntactic 

domains. We also introduce the concepts of on-zones and of-zones of specinstructions with semantics defined 

a little later.  

sin : SpeIns =                 specified instructions or specinstructions 

Instruction              | 
Assertion               |  
SpeIns ; SpeIns           | 
asr con in SpeIns rsa         |                 on-zones 

off con in SpeIns ffo         |                off-zones 

if ValExp then SpeIns else SpeIns fi   | 
if-error ValExp then SpeIns fi      | 
while ValExp do SpeIns od        | 
skip-ins  

sde : SpeDec =                   specified declarations or specdeclarations 
   Declaration            | 
   Assertion             | 
   SpeDec ; SpeDec          | 
   skip-dec 

sct : SpeClaTra =               specified class transformers or spectransformers 

   AncClaTra             | 
Assertion              |  

   SpeClaTra ; SpeClaTra        | 
   skip-sct 

spp : SpeProPre =                    specified program preambles 

   SpeDec              | 
   SpeIns              | 
   SpeProPre ; SpeProPre        | 
   skip-spp 
    
spr : SpePro =                    specified programs or specprograms 

SpeProPre ; open procedures ; SpeIns   | 
SpeProPre            | 
SpeClaTra 
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Sometimes we shall need to express the fact that an assertion asr con rsa is to be satisfied not only in one 

particular location of a specinstruction sin, but during the “whole execution” of sin, i.e., by all its intermediate 

states with the exclusion of local states of procedure calls. In such a case, instead of “physically” inserting an 

assertion into sin in all expected positions, we shall use a on-zone instruction of the form 

asr con in sin rsa   

where con will be called a zone assertion. Typical situations where we want to insure the satisfaction of an 

assertion in a zone take place in data-base programming, where zone assertions are known as integrity 

constraints. In the same area of applications we sometime wish to “switch off” a zone assertion, to perform 

an operation that temporarily “spoils” an integrity constraint.  In such a case we shall write 

off con in sin on  

to indicate the range of the off-zone. Examples of the use of both concepts in metaprogram derivation are 

shown in Sec. Sec. 9.5.1 and 9.5.1.  

We shall not formalize the ranges of assertions, since this would lead to too many technicalities, e.g., in the 

case when zone ranges overlap. We only wish to signalize the idea, and to use it in simple situations.  

In the end it is worth noticing that the semantics of zones is not compositional, since in a general case the 

denotation 

[ asr con : sin rsa ] 

can’t be described as a function of [sin] and [con]. As an example consider two following specinstructions: 

asr x > 0:  x := x rsa                          and 

asr x > 0:  x := -x ; x := -x rsa 

The denotations of their instructions are identical, but the denotations of declarations are not.  

9.2.7 Algorithmic conditions  

Algorithmic conditions are conditions that include specified programs. The domain of algorithmic conditions 

is defined in the following way: 

con : AlgCondition =   
SpePro @ Condition |                       left-algorithmic conditions78 

Condition @ SpePro                       right-algorithmic conditions 

The semantics of algorithmic conditions is as follows: 

[spr @ con].sta =  
 (∃ sta1 : {con}) [spr].sta = sta1 ➔ tv 

true           ➔ fv  

[con @ spr].sta = 
 (∃ sta1 : {con}) [spr].sta1 = sta ➔ tv 
 true           ➔ fv 

Note that in the first case, since sta1 : {con} and all conditions are error transparent by definition, sta1 can’t 

carry an error. This means that spr with input sta terminates cleanly. Also sta can’t carry an error since 

specified programs are error transparent.  

The situation in the second case is different. Here we start from an input state that satisfies con, and 

therefore must be error free, but terminal states may carry errors.  

 

78 Left algorithmic conditions, although not called in this way, constituted a fundament of algorithmic logic developed at 
Warsaw University in the decades 1970. and 1980. (see [10]). 
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Since algorithmic conditions are two-valued79 they are unambiguously identified by their truth domains. 

Consequently their equivalent definitions are following  : 

{spr @ con}  is the set of all input states that cause spr to terminate cleanly with output states  

that satisfy  con, 

{con @ spr}  is the set of all output states of spr for input states that satisfy con. 

Algorithmic condition may be not computable since the termination property of programs is not decidable. 

The following obvious equalities also hold (for the definition of ‘●’ see Sec. 2.7): 

{spr @ con} = [spr] ● {con}  
{con @ spr} = {con} ● [spr]  

At the end we assume that the domain Condition is closed under both operations of building algorithmic 

conditions. It means, in particular, that conditions in algorithmic conditions may be algorithmic themselves. 

9.3 Metaconditions 

9.3.1 Basic categories of metaconditions 

Metaconditions describe semantic properties of conditions, specified programs and their components. 

Syntactically, they do not belong to the validating language Lingua-V but to the metalanguage Lingua-MV 

(cf. Sec. 9.1). Each metacondition is either true or false, which means that the denotations of metaconditions 

are classical logical values tt or ff.  

We assume that the language of metaconditions will be closed under classical connectives and, or, not 
and implies. Atomic metaconditions, and their meanings, are defined as follows:  

con-1  con-2  iff(def)  {con-1} ⊆ {con-2}               stronger than; metaimplication 
con-1  con-2  iff(def)  {con-1} = {con-2}             weakly equivalent 

con-1 ⊑ con-2  iff(def)  [con-1] ⊆ [con-2]                 less defined 

con-1    ≡ con-2  iff(def)  [con-1] = [con-2]              strongly equivalent 

The relations, i.e., , ⊑,  and ≡ will be called metapredicates. To better understand their nature let’s see 

the following examples, where we assume that the evaluation of the square root √𝑥
2

 generates an error if x is 

not a nonnegative real number: 

x>0 and  √𝑥
2

 > 2 ≡    x > 4  if x is not a real-number variable, then both sides generate the same error, 

√𝑥
2

 > 2      x > 4   but ≡ does not hold, 

√𝑥
2

 > 4       x > 3    but neither  nor ⊑ holds. 

If we assume that for negative x function  √𝑥
2

  is undefined rather than generates and error, then the following 

relation holds: 

√𝑥
2

 < 2    ⊑   x < 4   but neither ≡ nor  holds, 

The following rather obvious relationships hold between metapredicates80: 

con1  ≡   con2    is equivalent to  con1 ⊑ con2  and  con2 ⊑ con1 
con1    con2    is equivalent to  con1  con2  and  con2  con1 
con1  ≡   con2    implies     con1  con2 
con1  ≡   con2   implies      con1 ⊑ con2 

 

79 We could have made them three-valued, but we do not need to do so, since in using algorithmic conditions we shall 
refer to their truth domains only.  

80 It is worth noticing that on the ground of our non-classical calculus of conditions we have two concepts of satisfiability 
― strong satisfiability (con ≡ TT) con is always true, and weak satisfiability (con ⊑ TT ) con is never false. Readers 
interested in logics based on these concepts are referred to [58]. 
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con1   con2    implies      con1  con2 

It is important to understand the difference between three implication-like constructors that belong to three 

different logical and linguistical levels: 

1. implies   : Condition x Condition ⟼ Condition   — implication in Lingua-V, 

2.     : Condition x Condition ⟼ {tt, ff}    — metaimplication in Lingua-MV, 

3. implies  : {tt, ff} x {tt, ff}     ⟼ {tt, ff}    — (usual) implication in MetaSoft  

Using metaimplications and algorithmic conditions, we can easily express the total and the partial correctness 

of a specprogram spr for a precondition prc and a postcondition poc: 

prc  spr @ poc                       clean total correctness 

prc @ spr  poc                          partial  correctness 

As we see, spr @ poc is the weakest total precondition for spr and poc, and prc @ spr is the strongest partial 

postcondition81 for spr and prc .  

In our future rules of the development of correct programs we shall use another category of Lingua-MV 

called metaprograms that express of specified programs and are of the form 

pre prc : spr post poc 

Their meaning is defined in an obvious way: 

pre prc : spr post poc iff (def) prc  spr @ poc 

Note that since our conditions have been assumed error-transparent (Sec. 9.2.1), clean total correctness insures 

non-abortion.  

In an analogous way we define the categories of metainstructions, and metadeclarations, and, in general, 

metacomponents of specprograms. 

The notion of total correctness with clean termination was defined by Andrzej Blikle in [23]. It is different 

from total correctness considered by other authors (cf. [8], [44], [45] or [55]), where programs never generate 

errors, i.e., never abort. In the evaluation of our programs, error messages may be raised, but if a program is 

correct, this will not happen. 

A special category of metaconditions will be used in the development of while-do-od instructions (Sec. 

9.4.6) and include metacondition of the form: 

limited replicability of sin if con 

This metacondition is true if there is no infinite sequence of states sta-1, sta-2,… such that for all i = 1,2,… 

[con].sta-i  = tv   
sta-(i+1) = [sin].sta-i 

Cf. limited replicability of a function defined in Sec. 8.7.2. 

9.3.2 Properties of metapredicates 

This section includes a list of lemmas which are useful in the development of correct metaprograms.  

Lemma 9.3.2-1 Relations ≡ and  are both equivalences, i.e., they are reflexive, symmetric, and transitive. 

Lemma 9.3.2-2 Strong equivalence is a congruence wrt and, or and not, i.e., the replacement of a subcondition 

of a condition by a strongly equivalent one result a condition strongly equivalent to the initial one. 

Lemma 9.3.2-3 Weak equivalence is a congruence wrt and and or.  

Weak equivalence is not a congruence wrt negation which means that  

 

81 These concepts are due to Edsger W. Dijkstra (see [44] and [45]). 
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con1  con2   does not imply   not con1  not con2 

For instance, although 

√𝑥
2

 > 2  x > 4    

is satisfied, the metacondition 

√𝑥
2

 ≤ 2  x ≤ 4  

is not, since for x = −1 the right-hand-side equation evaluates to tv, but on the left-hand side, we have an error.  

Lemma 9.3.2-4 The operators and and or are strongly associative, i.e. 

(con1 and con2) and con3  ≡ con1 and (con2 and con3) 
(con1  or con2)  or con3  ≡ con1  or (con2  or con3) 

Of course, they are also weakly associative since strong equivalence implies weak equivalence. 

Lemma 9.3.2-5 The operator and is strongly left-hand-side distributive wrt to or and vice versa, i.e.. 

con1 and (con2 or con3)  ≡  con1 and con2)  or   (con1 and con3) 
con1 or    (con2 and con3) ≡  con1 or con2)    and (con1 or con3) 

However, both operators are not strongly right-hand-side distributive. Indeed (not quite formally written): 

(tv or ee) and fv = fv   but   (tv and fv) or (ee and fv)  = ee 
(fv and ee) or tv = tv   but   (fv or tv) and (ee or tv)  = ee                          (9.3.2-1) 

Lemma 9.3.2-6 The operator and is weakly left-hand-side distributive wrt or i.e. 

(con1 or con2) and con3   (con1 and con3) or (con2 and con3) 

However, or is not even weakly left-hand-side distributive wrt and which can be seen in (9.3.2-1). 

Lemma 9.3.2-7 The de Morgan’s laws for and and or and for the negation of quantifiers are satisfied with 

strong equivalence. 

Lemma 9.3.2-8 Conjunction is weakly commutative, i.e., 

con1 and con2   con2 and con1 

However, conjunctions are not strongly commutative, and the disjunction is not even weakly commutative, 

since: 

tv or ee = tv   but   ee or tv = ee 

Lemma 9.3.2-9  

If  con1  con2  then  con1 and con2  ≡ con1. 

Besides the two-argument metapredicates, we also define three-argument metapredicates which will be used 

in the development of correct metaprograms: 

con1 ≡ con2    whenever con means  con and con1 ≡  con and con2  
con1  con2  whenever con means  con and con1  con and con2 
con1  con2  whenever con means  con and con1  con and con2 

In all these cases, we say that con constitutes a logical context or simply a context for the metapredicate that 

follows. We shall also say that the equivalence con1 ≡ con2 is satisfied under the condition con and 

analogously for a weak equivalence and metaimplication. E.g. the following metapredicates are satisfied: 

n > x2    ≡    √𝑛
2

 > x  whenever (n ≥ 0 and x ≥ 0) 

n > x2      √𝑛
2

 > x whenever x ≥ 0 

The context is usually a condition in whose range we want to replace one condition by another one. 
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All considerations presented here were published by A. Blikle in the decade 1980 in [22] and [26], and the 

development of these ideas towards three-valued deductive theories was investigated in a paper [58] by 

A.Blikle, B. Konikowska and A. Tarlecki.  

9.3.3 Metaconditions associated with programs 

As we are going to see in Sec. 9.4.1, in the development of correct metaprograms the development of pre- and 

postconditions is equally vital as the development of specprograms. To systematise the development of 

conditions we shall define three groups of metaconditions depending on specprograms, metaprograms and 

specification languages respectively. The first group describes behavioural properties of conditions versus 

specprograms: 

con resilient to spr if con @ spr  con — 
con is resilient to spr, if its satisfaction is not 

violated by spr, 

con consumed by spr if con  spr @ not con — 
con is consumed by spr, if it is like a raw 

material that assures execution but disappears 

after it, 

con catalyzing for spr if con  spr @ con — 
con is catalysing for spr, if it is like a 

chemical catalyzer — it assures execution but 

is not consumed, 

con essential for spr if  con ≡ spr @ NF — 
con is essential for spr if it is the weakest 

preconditions that ensures a clean termination 

of spr. 

Since specprograms are by definition deterministic (represent functions), catalyzing conditions are resilient, 

but not vice versa. To illustrate the defined metaconditions consider a simple metaprogram: 

pre (x is free) and (var y is integer with value < 3) : 
let x be real with value > 10 tel; 
x := 17,3 
… 

post (var x is real with value > 10) and (var y is integer with value < 3) and (x = 17) 

The following relations hold: 

• var y is integer with value < 3  is resilient   to the declaration of x, but not catalyzing, 

• x is free        is consumed  by the declaration of x and is essential  for it. 

• var x is real with value > 10 is catalyzing for x := 17,3. 

Note that the catalyzing condition for the assignment is not essential, since is not the weakest. The essential 

condition for x := 17,3 is var x is real, i.e., with a trivial yoke. 

It is to be emphasized that although we considered a metaprogram in our example, all illustrated properties 

concern relations between a condition and a specprogram, and do not depend on the fact that our exemplary 

metaprogram is correct.  

Our second group of metaconditions concerns the satisfaction of conditions against the executions of 

correct metaprograms, i.e., against the sequences of consecutive states of such executions. To avoid talking 

about sequences of states, that would lead to an alternative semantics of programs82, we introduce an auxiliary 

concept of a cut of a specprogram. 

 

82 Such a semantics was introduced and investigated by Andrzej Blikle in [19]. 
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Let AlpLin-V be an alphabet of Lingua-V, i.e., a finite set of characters such that all metaprograms are 

words over AlpLin-V. Let 

phr : Phrase = AlpLin-V* 

be the set of all words over this alphabet that we shall call phrases. By a cut of a metaprogram  

mpr = pre prc : spr post poc 

we mean any pair of phrases of the form (pre prc : pre, pos post poc), called respectively the head and the 

tail of this cut, such that: 

pre prc : pre ; pos post poc = mpr. 

and the semicolon is not “located” in a body of a procedure declarations (we skip a formal definition of 

“location”). Intuitively, cuts identify “global” semicolons in metaprograms. Note that we do not exclude cuts 

through class declarations or structured instructions, but we exclude cuts though procedure bodies.  

It is evident that cuts of a given metaprogram may be linearly ordered by a relation earlier/later. We skip 

its formal definition. We say that a condition con is satisfied in cut (pre prc : pre, pos post poc) if the 

metaprogram: 

pre prc : pre ; asr con rsa ; pos post poc 

is correct. Note that in such a case mpr must be correct as well.  

Having defined cuts, we are ready to define temporal properties of conditions versus correct metaprograms. 

Analogously as in the case of behavioural properties we define corresponding metaconditions between 

conditions and metaprograms. Let  

mpr = pre prc: spr post poc 

be a correct metaprogram. We say that: 

con primary in mpr if 
prc  con, i.e. if con is satisfied at the entrance of the program (and 

possibly later as well), 

con induced in mpr if 
there exists a cut of mpr such that con is satisfied in this cut; an induced 

condition must be eventually satisfied, 

con hereditary in mpr if 
con once satisfied in a cut, will be satisfied in all later cuts; note that a 

condition that is never satisfied is hereditary, 

con co-hereditary in mpr if 
con once falsified, will be falsified in all later cuts; con is co-hereditary 

iff not con is hereditary 

con perpetual in mpr if 
con is primary and hereditary at the same time, i.e. if it is satisfied in all 

cuts of mpr. 
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Fig. 9.3.3-1 Temporal categories of conditions 

Note that in all five cases we define a relation between a condition and a correct metaprogram. We do not 

consider temporal properties of conditions against incorrect metaprograms. To illustrate the introduced 

concepts let’s return to our example of a metaprogram. In this program: 

x is free         — is primary and co-hereditary, 

var y is integer with value < 3  — is perpetual, since a type once declared remains declared forever, 
var x is real with value > 10  — is induced and hereditary,  

x = 17,3         — is induced but not necessarily hereditary. 

Note that condition x = 17 maybe in this program hereditary or not, depending whether the value of x is later 

changed. The situation with var x is real with value > 10 is different. It is hereditary in every correct metaprogram 

since a variable, once declared, can’t be redeclared anymore. 

The properties of conditions defined so far describe relations between conditions and spec- or 

metaprograms, i.e., are program dependent. Our last group of metaconditions describe properties of conditions 

that are program independent, i.e. satisfied in all programs of a Lingua-V. 

con is immunizing if con hereditary in mpr for every mpr, 

con is immanent if the value of con is never false, although may be undefined or be an error, 

con is underivable if 
whenever pre prc : spr pos poc is correct and poc  con, then 

prc  con. 

In Lingua-V, typical immunizing conditions are induced by declarations, but if we allow variable 

redeclarations, they would not be.  

Typical immanent conditions describe properties of mathematical beings appearing in our language, such 

as, e.g., 

x + y = y + x 

where + denotes an integer addition.  

A condition is underivable, if it can’t be induced in a metaprogram, unless it is included in the precondition 

of this program. Typical underivable conditions in Lingua-V are conditions of the pattern ide is free83. At the 

same time, since they are essential for declarations, they have to be assumed in the precondition of the 

program. In practice, in the process of program development, whenever we intend to add a declaration, we 

have to add an appropriate freeness condition to the precondition of this program, and then to “propagate” it 

(due to its resilience) to the pre- and postconditions of all preceding programs. More on this issue in Sec. 9.6.1.  

In the process of a metaprogram derivation described in Sec. 9.4.1, underivable conditions and hereditary 

conditions play contrasting roles: 

• Whenever we need an underivable condition in a precondition of an intermediate metaprogram, we 

have to add it to the precondition of the previous program and, therefore, to the precondition of the 

initial program. 

• Whenever we induce a hereditary condition in a postcondition of an intermediate program, we can add 

it to the postcondition of the next program, and consequently to the postcondition of the final program. 

We even have to do it, if we want our postcondition to be the strongest one.      

As we see, in the process of a metaprogram development we, on one hand, incrementally create the future 

precondition of this program by adding to it underivable conditions that we shall need later, and on the other 

 

83 We may also think abut “less trivial” underivable conditions such as, e.g., conditions describing properties of 
databases, that can’t be created by Lingua programs, but at the same time can be processed by such programs.  



A.Blikle, P. Chrząstowski-Wachtel, J. Jablonowski, A. Tarlecki, A Denotational Engineering of Programming Languages       181 

 

— we incrementally create the future strongest postcondition of the program by adding to it hereditary 

conditions.  

At the same time we have “to keep a repository” of immanent conditions that we shall need to prove some 

facts, e.g., metaimplications, in developing our metaprograms. More about a “logistics” of conditions in Sec. 

9.6.1 

9.4 Metaprogram constructions rules 

9.4.1 A birds-eye view on a metaprogram development 

Due to our assumption in Sec. 6.3 every “completed” metaprogram is of the form 

pre prc: spp ; open procedures ; sin post poc 

where spp is a specified program preamble and sin is a specified instruction (see Sec. 9.2.6). This form may 

be “unfolded” to  

pre prc :  
atp-1 ; … ; atp-n ; open procedures ; asi-1 ; … ; asi-k  

post poc  

where 

• atp-i’s are atomic preambles, i.e., single declarations of variables or of classes, or atomic 

specinstructions, 

• asi-i’s are atomic specinstructions, i.e., instructions listed in Sec. 7.3.7, except the last one, plus 

assertions; note that structured instructions such as while-do-od and if-then-else-fi are regarded as 

atomic, although their “internal instructions” may be quite complex. 

Consequently, the process of a metaprogram development may be split into a sequence of steps, each building 

one atomic metaprogram: 

pre prc-1: atp-1 post poc-1 
pre prc-2: atp-2 post poc-2 
… 
pre prc-n : open procedures  post poc-n 
pre prc-(n+1) : asi-1 post poc-(n+1) 
… 
pre prc-(n+k+1) : asi-k post poc-(n+k+1) 

where 

prc     prc-1 
poc-i     prc-(i+1) for i = 1,2,…,k+n 
poc-(n+k+1)  poc 

In this process we are building not only successive imperative components or our future program, but also 

successive pre- and postconditions. Observe that although the composition of imperative components may be 

left to the end of the process, pre- and postconditions have to be build incrementally “as we go”. This means 

that whenever we are creating a next metaprogram 

pre prc-i: atp-2 post poc-i 

we have to insure that the former postcondition metaimplies prc-i. In practice it must be either equal prc-i or 

of the form com and prc-i. Whatever we want to say about programs must be expressed by derivable 

conditions or included in the precondition of the program. It is why the derivability, resilience and heredity of 

conditions are such vital issues in program development.  

Since atomic metaprograms will be eventually combined into a final metaprogram in using Rule 9.4.2-2, 

we may restrict our further considerations to the development of atomic metaprograms. Note in this place that 
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atomic metaprograms do not need to be simple. A metaprogram with a single assignment instruction is simple, 

but developing a while loop or a class declaration with recursive procedures may be quite challenging task 

(cf. Sec. 9.4.4.2). 

We in the sequel shall define three categories of rules for the derivation of correct metaprograms: 

• correctness preserving rules describing transformations of programs which preserve their correctness 

but possibly change their meanings, i.e., the denotations of their specprograms (Sec. Sec. 9.4.2 and 9.5), 

• universal rules concerning all metaprograms (Sec. 9.4.3), 

• specific rules concerning declarations (Sec. Sec. 9.4.4 and 9.4.5) and instructions (Sec. 9.4.6). 

Specific rules may be atomic, i.e., claiming an (unconditional) correctness of a metaprogram, or implicative, 

i.e., claiming that if some metaconditions are satisfied, then some metaprograms are correct.  

9.4.2 Correctness-preserving modifications of metaprograms 

Let’s recall (cf. Sec. 9.2.6) that all our specprograms are of the form 

spp ; open procedures ; sin 

where spp is a specprogram preamble, and sin is a specinstruction (both may be trivial).  

Lemma 9.4.2-1 If  

pre prc : spp ; open procedures ; sin post poc  

is correct, then in any execution of spp;open procedures; sin that starts with a state satisfying prc: 

1. none of spp, sin, poc generates an error, 

2. states in {prc} do not bind identifiers that are (going to be) declared in spp,  

3. all assertions in sin are satisfied, 

4. the terminal state does not carry an error.  

Note that open procedures never generates an error, and, therefore, we do not need to mention this fact in our 

lemma. 

Lemma 9.4.2-2 If  

pre prc : spp ; open procedures ; sin post poc  

is correct and sin1 has been created from sin by the removal of an arbitrary number of assertions or on-

assertion-declarations, then the metaprogram 

pre prc : spp ; open procedures ; sin1 post poc 

is correct as well. 

Lemma 9.4.2-3 The replacement in a correct metaprograms its pre- or post-condition or a condition in an 

assertion by a weakly equivalent condition, does not violate the correctness of the program.  

For pre- and post-conditions the proof is obvious. For assertions it follows from the fact that if 

con1  con2  i.e.  {con1} = {con2} 

then 

[con1].sta = tv  iff  [con2].sta =tv 

In particular, this lemma implies that on the level of conditions (but not of boolean expressions of the 

programming layer!) we can apply all the lemmas of Sec. 9.3.2 that concern weak equivalence.  

Lemma 9.4.2-4 The replacement in a correct metaprogram of any boolean expression vex in an instruction 

by a boolean expression vex1 that is stronger defined (i.e., such that vex ⊑ vex1) does not violate the 

correctness of the metaprogram.  
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If the source metaprogram is correct, then none of its boolean expressions generates an error, and wherever 

vex is defined vex1 is defined as well, and has the same value. In particular we may replace any boolean 

expression (and, of course, any conditions) by strongly equivalent ones.  

9.4.3 Universal rules 

First of our universal rules84, that we shall call the main rule, bases on our earlier assumption about the general 

structure of metaprograms and is the following: 

Rule 9.4.3-1 The basic rule 

(1) pre prc                                           : spp                          post (de-con and in-con) 
(2) pre (de-con and in-con)                       : open procedures   post (de-con and op-con and in-con) 
(3) pre (de-con and op-con and in-con) : sin                      post (de-con and op-con and si-con) 

pre prc:  
 spp ; open procedures ; sin  
post (de-con and op-con and si-con) 

In this rule: 

• spp is a specified program preamble, 

• de-con is a hereditary condition induced by declarations included in spp, 

• in-con is a condition induced by instructions included in spp, 

• op-con is a hereditary condition induced by open procedures, 

• sin is a specified instruction, 

• si-con is a condition induced by sin. 

Although our rule is quite straightforward, we decided to show it, since it illustrates a way in which a final 

postcondition of a metaprogram is constructed incrementally. This rule bases on the observation from Sec. 

Błąd! Nie można odnaleźć źródła odwołania. that postconditions induced by declarations are immunizing 

in Lingua-V, and also on an obvious fact that condition in-con is resilient to open procedures. In the third 

step of our program development, in-con in the precondition is modified to si-con in the postcondition. This 

modification describes “the real effect” of the execution of our program. 

Note now that whereas an incremental construction of a final postcondition is explicit in our rule, the 

process of building precondition is not. It is only implicit in the fact that all declaration-induced conditions — 

that are necessary to make our programs run cleanly — need some underivable preconditions to be induced. 

We have to make the latter primitive in our metaprogram, and, of course, they will be temporary. Each of 

them will cease to be satisfied when it is “consumed” by an associated declaration.  

Our main rule is based on the following universal rule for sequential composition: 

Rule 9.4.3-2 Sequential compositions 

pre prc-1: spr-1 post poc-1 
pre prc-2: spr-2 post poc-2 
poc-1  prc-2 

pre prc-1: spr-1;                           spr-2 post poc-2 
pre prc-1: spr-1; asr poc-1 rsa; spr-2 post poc-2 
pre prc-1: spr-1; asr prc-2  rsa; spr-2 post poc-2 

 

84 Mathematically program-construction rules described in this and the following sections are just lemmas as in 
preceding sections. We call them “rules” for historical reasons, but must remember that they are not “assumed” as in 
Hoare’s or Dijkstra’s logic, by have to be proved (unless are obvious).   
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Proof is immediate from Rule 8.7.1-1. Under the line we have a conjunction of metaconditions which means 

that our rule represent three single rules. The second and the third version will be used in transformational 

programming sketched in Sec. 9.4.6.6. 

Rule 9.4.3-3 Strengthening preconditions  

pre prc : spr post poc 
prc-1  prc 

pre prc-1 : spr post poc 

 

Rule 9.4.3-4 Weakening postconditions 

pre prc : spr post poc 
poc  poc-1 

pre prc : spr post poc-1 

 

Rule 9.4.3-5 Conjunction and disjunction of conditions 

pre prc-1 : spr  post poc-1 
pre prc-2 : spr  post poc-2 

pre (prc-1 and prc-2) : spr  post (poc-1 and poc-2) 
pre (prc-1 or prc-2)    : spr  post (poc-1 or poc-2) 

 

Rule 9.4.3-6 Propagation of resilient conditions 

pre prc: spr post poc 
con resilient to spr 

pre (prc and con) : spr post (poc and con) 

The proofs of these rules follow immediate from the rules 8.7.1-3, 8.7.1-4, 8.7.1-5 and 8.7.1-6 respectively.  

9.4.4 Rules for metadeclarations 

There are four categories of atomic declarations (Sec. 6.7.1) to be considered from the perspective of program-

construction rules:  

• declarations of variables,  

• enrichments of covering relations, 

• declarations of classes,  

• global openings of procedures. 

In all these cases postconditions of corresponding metadeclarations are built in an incremental way. We shall 

discuss them in the subsequent sections.  

9.4.4.1 Variable declarations 

The rule for variable declarations is nuclear and is the following: 

Rule 9.4.4-1 Variable declaration 

pre (ide is free) and (tex is type) 
let ide be tex with yex tel   

post var ide is tex with yex 
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The proof  is obvious. The rule for class attribute declaration is analogous, but belongs to a different category 

since attribute declarations are executed as components of class declarations.  

9.4.4.2 Enrichment of a covering relation 

An enrichment of a current covering relations add new pairs of types to this relations and modifies cov-

expression accordingly. This leads us to the following rule:  

Rule 9.4.4-2 Enrichment of a covering relation 

pre consistent(tex1 , tex2) and (coe is current): 
enrich-cov(tex1, tex2 ) 

post  ((tex1, tex2) ; coe ) is current  

The situation with condition coe is current is similar to that of ide is free. It is not derivable and co-hereditary 

(Sec. 9.3.3). In turn the derivability of consistent(tex1 , tex2) must be insured during the process of program 

derivation, depending on what tex1 and tex2 are. 

9.4.4.3 Class declarations 

A general scheme of a class metadeclaration is the following: 

pre prc: 
class ide parent cli with ctr-1; … ; ctr-k ssalc                       (9.4.4-1) 

post poc 

where ctr-i’s are atomic class transformers and cli is a class indicator which may be of one of two following 

forms: 

cli : Identifier 
cli = empty-class 

Our goal in the development of this metadeclaration consists in establishing: 

• a precondition prc that guarantee a clean execution of our declaration, 

• a postcondition poc that describes the effect of this declaration. 

To realize this goal let’s rewrite (9.4.4-1) to an equivalent form where class transformers are replaced by 

anchored class transformers: 

pre prc : 
class ide parent cli with skip-ctr ssalc ; 
ctr-1 in ide ; 
… 
ctr-k in ide 

post con 

Given this form we can formulate a scheme of a rule analogous to the main rule in Sec. 9.4.2: 

Rule 9.4.4-2 Class declaration 

(1) pre prc                                   : class ide parent cli with skip-ctr ssalc    post pa-poc 
(2) pre pa-poc                            : ctr-1 in ide    post (pa-poc and cr-poc-1) 
(3) pre (pa-poc and cr-poc-1) : ctr-2 in ide   post (pa-poc and cr-poc-1and cr-poc-2) 
(4) ... 

pre prc: 
class ide parent cli with ctr-1; … ; ctr-k ssalc 

post poc 

The proof of this rule is immediate from Rule 9.4.2-1 for sequential composition. What remains to be done 

now, is to define rules for all categories of metadeclarations that may appear above the line.. First of them 

concerns a declaration of a funding class and is the following: 
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Rule 9.4.4-3 Declaration of a funding class  

pre : (cl-ide is free) and (cli is class) 
class cl-ide parent cli with skip-ctr ssalc   

post ide child of cli 

Given this initiation rule we can proceed to the rules for anchored class transformers. To save the space (and 

the resilience of our readers!), we will show only selected examples of such rules. We start from the rule for 

adding an attribute. It is similar to Rule 9.4.4-1 for variable declaration. 

Rule (9.4.4-4) Adding an abstract attribute 

pre (at-ide is free) and (cl-ide is class) and (tex is type) : 
let at-ide be tex with yex as pst tel in cl-ide 

post att at-ide is tex with yex in cl-ide as pst 

Rule 9.4.4-5 Adding a type constant  

pre (tc-ide is free) and (cl-ide is class) and (tex is type) : 
set tc-ide be tex tes in cl-ide 

post tc-ide is tex 

Rule 9.4.4-5 Adding an imperative pre-procedure declaration 

pre (pr-ide is free) and (cl-ide is class) 
pr-ide (val my-fpc-v ref my-fpc-r) my-body in cl-ide; 

post pre-proc pr-ide (val my-fpc-v ref my-fpc-r) my-body imperative in cl-ide 

The postcondition of the resulting metadeclaration has been defined in Sec. 9.2.5. The soundness of this rule 

is evident from the definition of the applied transformer (Sec. 6.7.4.6). Note that all we need for a pre-

procedure declaration to execute cleanly is that its hosting class cl-ide has been declared, and its name pr-ide 

is fresh. Rules for functional procedures and object constructors are, of course, analogous.  

9.4.5 The opening of procedures 

Our last rule associated with declarations concerns the global declaration open procedures. In this case we 

can’t formulate one universal rule since the number of class declarations in a program, and the numbers of 

procedure declarations in each class are unlimited. All we can do, is to formulate the following scheme of a 

nuclear rule.  

Rule 9.4.5-1 The opening of procedures 

pre 
 pre-proc pr-ide-11 (val fpc-v-11 ref fpc-r-11) body-11 imperative in cl-ide-1 and 

pre-proc pr-ide-12 (val fpc-v-12 ref fpc-r-12) body-12 imperative in cl-ide-1 and 
… 
pre-proc pr-ide-21 (val fpc-v-21 ref fpc-r-21) body-21 imperative in cl-ide-2 and 
pre-proc pr-ide-22 (val fpc-v-22 ref fpc-r-22) body-22 imperative in cl-ide-2 and 
… 
open procedures 

post  
cl-ide-1.pr-ide-11 opened, 
cl-ide-1.pr-ide-12 opened, 

 … 
cl-ide-2.pr-ide-21  opened, 
cl-ide-2.pr-ide-22  opened, 

 … 

It is to be emphasized that whereas in the precondition we have a conjunction of single conditions, the 

postcondition is one atomic condition that expresses a property of a tuple of procedures. Such a construction 
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is necessary, since global declarations declare tuples of procedures in “one step”. Therefore, our postcondition 

should express the fact that procedures assigned to procedure indicators in the current state are identical with 

procedures created from the corresponding pre-procedures.  

9.4.6 Rules for metainstructions 

9.4.6.1 Rules for composed instructions 

Rule 9.4.6-1 Conditional branching if-then-else-fi 

pre (prc and vex)           : sin1 post poc 
pre (prc and not vex) : sin2 post poc 
prc  (vex or (not vex)) 

pre prc : if vex then sin1 else sin2 fi post poc 

Here the two-sided vertical arrow represents two implications: top-to-bottom and a bottom-to-top. The 

metaimplication above the line guarantees that whenever the precondition is satisfied, the evaluation of 

boolean expression vec terminates, and yields a boolean value rather than an error. Note that in a two-valued 

logic this metadeclaration would be a tautology, and therefore is omitted.  

The second rule corresponds to a while-do-od loop, where vex is a boolean expression, and inv is a 

condition called an invariant of the loop: 

 Rule  9.4.6-2 Loop while-do-od 

(1) pre (inv and vex) : sin post inv 
(2) limited replicability of (asr vex rsa ; sin) if inv 
(3) prc  inv 
(4) inv  (vex or (not vex)) 
(5) inv and (not vex))  poc 

pre prc : while vex do sin od post poc 

The metacondition used in (2) has been defined in Sec. 9.3.1. Proof follows directly from rule Rule 8.7.2-6. 

9.4.6.2 Rules for assignment instructions 

In the case of assignment instructions, instead of formulating a rule “ready to be used”, we show a universal 

rule and sketch a way of using it in concrete situations. This rule has a tautological character and is the 

following: 

Rule 9.4.6-1 @-tautology 

pre sin @ con 
 sin 
post con 

The proof of this rule follows directly from the definition of the denotation of  sin @ con in Sec. 9.2.7. The 

idea of using this rule consists in a replacement of the algorithmic precondition by a weakly equivalent one 

which is not algorithmic. To see, how it works consider as an example the following tautological 

metainstruction: 

pre x := y+1 @ 2*x < 10 
 x := y+1                                (9.4.6.2-1) 
post 2*x < 10 

where we assume that the arithmetical operators +, * and < are integer operations. It is implicit in this rule that: 

x   has been declared as an integer variable and (therefore) its value is an integer 

y  analogously 
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x+1 does not generate an error 

2*x analogously 

Under this assumption we can easily prove the following weak equivalence (note that a strong equivalence 

does not hold): 

x := y+1 @ 2*x < 10     (x is integer) and 2*(y+1) < 10                    (9.4.6.2-2) 

Due to our assumptions about arithmetical operators the left-hand side of the equivalence implies that x and y 

are integer variables. Since on the right-hand side x does not appear in the inequality, we have to add an explicit 

claim about its type. For simplicity we do not consider the possibility of an overload, and we assume that the 

types of both variables are yokeless, i.e. that their yokes are TT.  

By Rule 9.4.3-3, the precondition of (9.4.6.2-1) may be replaced by the right-hand side of (9.4.6.2-2) 
which leads us to the following metainstruction, which is no more a tautology: 

pre (x is integer) and 2*(y+1) < 10 
 x := y+1 
post 2*x < 10 

This step completes the development of a correct metaprogram.  

Now, let’s apply Rule 9.4.6-1 in an object-oriented context. Consider the following initial tautological 

metainstruction: 

pre x.q := y.p.r + 1  @  2*x.q < 10 
 x.q := y.p.r + 1 
post 2*x.q < 10 

where x, y and y.p point to objects. Now, we can prove the following weak equivalence: 

x.q := y.p.r + 1  @ 2*x.q < 10 

     

(type of x.q accepts type of y.p.r+1) and 2*(y.p.r+1) < 10 

Note that it is implicit in (i.e. is metaimplied by) the right-hand side of this equivalence that x, y and y.p point 

to objects, and that all involved expressions evaluate cleanly. Basing on this equivalence we can claim the 

correctness of the following metainstruction: 

pre (type of x.q accepts type of y.p.r) and 2*(y.p.r+1) < 10 
 x.q := y.p.r + 1 
post 2*x.q < 10 

9.4.6.3 Rules for imperative procedure calls 

Construction rules formulated so far might be seen as tools for handling the following programming tasks:  

A. given a postcondition poc of a future metaprogram,  

B. create a specified program spr, and a precondition prc such that the following metaprogram is correct:  

pre prc: spr post poc  

In the case of procedure calls the task is different. This time,  

C. given a postcondition poc-call of a future procedure call, 

D. create a procedure declaration 

proc myProc ( val fpa-v ref fpa-r ) begin my-body end,                (9.4.6.3-1) 

and a precondition prc-call such that the following metainstruction is correct: 

pre prc-call :  
call MyClass.myProc(val apa-v ref apa-r)                  (9.4.6.3-2) 

post poc-call. 
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Of course, in the realization of this task, the major subtask and challenge consists in developing a correct 

metaprogram 

pre prc-body:  
my-body 

post poc-body. 

that includes the body of our future procedure. In the realization of D. we have to develop the following 

elements of the future declaration and call: 

1. a procedure body my-body, 

2. conditions prc-body and poc-body, such that  

pre prc-body: my-body post poc-body 
  is correct, 

3. two lists of formal parameters fpa-v and  fpa-r,  
4. two lists of actual parameters apa-v and apa-r, 
5. a precondition of the call pre-call such that (9.4.6.3-2) is correct.  

We shall try to figure out what relationships between the expected elements in 1. − 5. should hold to make 

(9.4.6.3-2) satisfied. 

In the first place the precondition of the call must guarantee that procedure myProc has been declared in 

MyClass, and that it has been opened. This prerequisite may be expressed by two following metaimplication: 

prc-call  myProc (val fpa-v, ref fpa-r) begin my-body end imperative in MyClass 

prc-call  procedure MyClass.myProc opened     

Both conditions in these metaimplications were defined in see Sec. 9.2.5. It is implicit in the first one that 

MyClass has been declared. 

The third fact that prc-call must guarantee is that the passing of actual parameters to formal parameters 

will execute cleanly, and that the resulting state will satisfy prc-body. To express this fact we shall use 

algorithmic condition (9.2.5-1) defined in Sec. 9.2.5, and request the following metaimplication: 

prc-call  pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with MyClass @ prc-body  

There is, however, one technical problem hidden in this request. When function pass-actual defined in Sec. 

6.6.3.4 is generating a local-initial state, this state is getting a declaration-time environment dt-env and a call-

time store (cf. Sec. 6.6.3.2). In turn, when we evaluate prc-call we are dealing with a call-time environment 

ct-env, rather than declaration-time environment dt-env. In this place we should recall that pass-actual 
“uses” the environment exclusively to compute the types of formal parameters, and the types declared in ct-
env are the same as types declared in dt-env, which, in turn, is a conclusion of our assumption (see Sec. 6.3) 

that in programs there are no declarations that would follow the opening of procedures. Consequently, our 

metaimplication describes adequately our expectations. 

The third, and the last fact that we have to guarantee, is that the satisfaction of postcondition poc-body in 

a local terminal state lt-sta will guarantee: 

a. that the return of references of formal parameters to actual parameters will be executed without an error 

message, 

b. that after the return of parameters  poc-call will be satisfied in the global terminal state. 

The requirement b. may be expressed by the following metaimplication: 

poc-body[fpa-r/apa-r]   poc-call 

where poc-body[fpa-r/apa-r] denotes poc-body, where each formal reference-parameter has been replaced 

by the corresponding actual parameter. Note that for every formal parameter there is exactly one actual 

parameter (although not necessarily vice versa).  

To express requirement a. we have to cope with another technical problem such that the references of actual 

parameters have to accept the values of corresponding formal parameters in the context of the declaration-

time covering relation dt-cov, i.e. in the declaration-time environment. By the assumption that all declarations 
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in our programs precede the openings of procedures (Sec. 6.3), and therefore also procedure calls, we can 

claim that this relation equals the call-time relation ct-cov, but still we have to express a property of a local-

terminal state in referring to the cov-relation of a “remote” state (see. Fig. 6.6.3-3). Note in this place that 

local-terminal relation may be different from (global) call-time relation since an extension of this relation 

might have taken place in the body of our procedure.  

What we have to do in this situation, is to “recall” ct-cov, “remembered” in a cov-expression coe that was 

adequate at the entrance to the call, i.e., that satisfies metaimplication  

prc-call   coe is adequate 

In practice, prc-call will „conjunctively include” condition coe is adequate. Given the call-time coe we can 

request the metaimplication 

poc-body   fpa-r accepts apa-r in coe 

which means that prc-body assures a clean execution of passing reference parameters. Summing up our 

considerations, we may claim the soundness of the following rule: 

Rule 9.4.6.3-1 A call of an imperative procedure 

(1) prc-call   myProc (val fpa-v ref fpa-r) my-body imperative in MyClass 
(2) prc-call   (pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with MyClass) @ prc-body 
(3) prc-call   procedure MyClass.myProc is opened 

(4) prc-call   coe is current  
(5) prc-body  my-body @ poc-body       i.e. pre prc-body : my-body post poc-body 

(6) poc-body  fpa-r accepts apa-r in coe 
(7) poc-body[fpa-r/apa-r]  poc-call  

pre prc-call : 
call MyClass.myProc (val apa-v ref apa-r) 

post poc-call 

Let us comment this rule. 

The precondition of the call guarantees that: 

(1) A pre-procedure named myProc has been declared in MyClass and the denotation of its body is 

identical with [my-body] (cf. Sec. 9.4.6.3). Note that this condition does not say (!) that the body of 

our procedure is my-body. 

(2) The process of passing actual parameters to formal parameters terminates cleanly, and the output state 

satisfies the precondition of the body.  

(3) Procedure MyClass.myProc has been opened, which practically means that the input state is a 

“follower” of an output state of declaration open procedures. Note that in syntactically correct programs 

metaimplication (3) is a consequence of (1) due to the rule (cf. Sec. 6.3) that no declarations follow 

open procedures. However, we decided to put (3) into our rule, to make it context-independent. In other 

words, we attempt to express all assumptions necessary for the correctness of our procedure call in 

terms of the properties of its input states.  

(4) Covering expression coe describes adequately the covering relation of the call-time state of the 

procedure. 

The precondition of the body guarantees that: 

(5) Every program whose denotation is [my-body] — hence, in particular, the body of our procedure — 

when starting its execution with prc-body satisfied, terminates cleanly, and its output state satisfies 

poc-body.  
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The postcondition of the body guarantees that: 

(6) The process of returning formal parameters to actual parameters terminates cleanly.  

(7) After the return of the references of formal reference-parameters to actual reference-parameters the 

postcondition of the call will be satisfied.  

9.4.6.4 The case of recursive imperative procedures 

In Sec. 9.4.6.3 we have introduced a sound construction rule which we can use in the process of building a 

procedure declaration with expected properties. In this process we have to “invent” such components of a 

future procedure declaration that the future call of this procedure will be correct for a given postcondition, and 

an “invented” precondition. Among seven metaimplications that we have to prove in order to ensure the 

correctness of our call, the implication (5) states that the body of our procedure is correct. In practice, we shall 

not prove (5) after having developed my-body, but we shall develop a correct metaprogram of the form: 

pre prc-body 
my-body                                (9.4.6.4-1) 

post poc-body 

Let’s try to figure out now, what happens, if my-body includes a (recursive) call of the future procedure? In 

this case our rule is still adequate, but we can’t establish the correctness of (9.4.6.4-1) without assuming the 

correctness of the future call: 

pre prc-call : 
call MyClass.myProc (val apa-v ref apa-r)                    (9.4.6.4-2) 

post poc-call 

In other words, in the case of recursion, we can’t first build (9.4.6.4-1) and then claim (9.4.6.4-2), but we 

have to develop/prove them in a certain sense “in parallel”.  

Further on, our procedure may call itself more than once in its body, and not necessarily directly, but also 

via other procedures. There is, therefore, a potentially infinite number of different mutual-recursion 

configurations that lead to an infinite number of corresponding construction rules. This situation may be 

compared to the case of iterative programs with goto’s considered in Sec. 8.3. However, whereas in the latter 

case a way out of the “labyrinth” of a variety of different programming structures was offered by structured 

programming, an analogous solution for recursive procedures seems doubtful. In the case of recursion, we 

probably have to treat each recursive structure separately using general rules described in Sec. 8.7.2. We will 

not delve deeper into this problem, leaving it for further research. Instead, we shall analyze one simple 

example.   

Let power be the name of a (future) recursive procedure to be declared in MyClass85, and let’s assume that 

our task consists of making the following call correct (we use some obvious colloquializations):  

pre prc-call 
call MyClass.power(val a,b ref c)                               (9.4.6.4-3) 

post var a,b,c are integer with value ≥ 0 and c=a^b 

where prc-call is to be found. As a “candidate declaration” of our procedure declaration let’s take: 

proc MyClass.power(val m, n integer ref k integer)   k = m^n 
 begin 

if n = 0     
then k := 1                                     (9.4.6.4-4) 
else n := n-1 ; call MyClass.power(val m, n ref k); k:= k*m       

 fi 

 

85 In this case we typeset power and MyClass in green Arial Narrow, since contrary to the case of Sec.9.4.6.3, now we 

are talking about a concrete procedure, rather than about a pattern of a procedure.  
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end 

and as a candidate for the precondition of the call let’s take: 

prc-call =  power (val m, n integer ref k integer) my-body imperative in MyClass and 
var a,b,c are integer with a,b,c ≥ 0 

where my-body is implicit in (9.4.6.4-4). To prove the correctness of (9.4.6.4-3) we shall use Rule 8.7.2-4 

(Sec. 8.7.2). Let: 

A = { prc-call } 
B = { var a,b,c are integer with a,b,c ≥ 0 and c=a^b } 
 
H = [ asr b > 0 rsa ] [ b := b-1 ]  
T = [ c:= c*a ]  
E = [ asr b = 0 rsa ] [ c := 1 ] 
F = [ call MyClass.power(val a,b ref c) ] 

To be able to claim (9.4.6.4-3) have to prove the following statements: 

(1) (∀ Q) ( AQ ⊆ B implies A(HQT) ⊆ B ) 
(2) AE  ⊆ B  
(3) A  ⊆ FS 

where Q denotes a denotation of an imperative program-component. We leave the details of this proof to the 

reader.  

9.4.6.5 The case of functional procedures 

Analogously to imperative procedures, correctness statements about functional procedures describe the 

properties of their calls. In this case, however, the result of a call is not a state, whose properties may be 

described by a condition, but a value. Consider the following (anchored) declaration of a functional pre-

procedure: 

fun funPower(val k, m, n) functional in MyClass 
 begin 

 let k be integer with value ≥ 0 tel 
 call MyClass.power(val m, n ref k)                       (9.4.6.5-1) 
 return 3*k+1 
end 

where MyClass.power is the procedure analyzed in Sec. 9.4.6.4. A possible correcness statemet describing a 

property of of the call may be the following: 

( funPower (val m, n ref k) begin body return integer end functional in MyClass ) and ( a, b ≥ 0 ) : 
 
call funPower(a, b) = 3*(a^b)+1 

where body is implicit in (9.4.6.5-1). This statement expresses the relationship between the input values of 

actual parameters a, and b, and the value exported by the call. Note that we may write our statement in a 

standard form with pre- and postcondition as: 

pre funPower (val m, n ref k) begin body return integer end functional in MyClass and a, b ≥ 0: 
skip-i 

post call funPower(a, b) = 3*(a^b)+1 

It is implicit in the postcondition that the call evaluates cleanly.  

We shall not go into a discussion of building correct functional procedures, leaving it to future research. In 

the same “spirit” we abandon a discussion of the construction of  correct object constructors.  
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9.4.6.6 Jaco de Bakker paradox in Hoare’s logic  

As was noticed by Jaco de Bakker (p. 108, Sec. 4 in [5]) and later commented by K. Apt in [4], on the ground 

of Hoare’s logic one can prove the formula: 

pre true : a[a[2]] := 1 post a[a[2]] = 1 

which for same arrays a is not true. Indeed, if 

a = [2,2]. 

then 

a[2] = 2    

hence the execution of the assignment 

a[a[2]] := 1  

means the execution of 

a[2] := 1 

which means that the new array is a = [2,1], and therefore a[a[2]] = a[1] = 2.  

Let us observe, however, that Hoare’s problem results neither from having arrays in a language nor from 

the admission of expressions like a[a[2]] but from an implicit assumption that whenever such an expression 

appears on the left-hand-side of an assignment, it should be treated as a variable. As a matter of fact, for many 

years, programmers used to talk about “subscripted variables” (in Algol 60 [71]) or “indexed variables” (in 

Pascal [56]).  

De Bakker’s problem with Hoare’s logic lies in an imperfect understanding of the meaning (the semantics) 

of array variables86. In our language de Bakker’s paradox does not appear since the instruction of the form: 

a.(a.2) := 1 

would be syntactically incorrect. In that place, we write 

a := change-in-arr a at a.2 by 1 ee 

or colloquially 

a := change-in-arr a by a.2 := 1 ee 

Now, on the ground of constructions rules of Sec. 9.4 we can easily derive the following correct metaprogram: 

pre a is arr-type number and a.1=2 and a.2=2 
a := change-in-arr a by a.2 := 1 ee 

post a.1=2 and a.2=1  

9.5 Transformational programming 

9.5.1 First example 

In the previous section, we were dealing with rules allowing to build correct metaprograms out of correct 

components. That was a situation analogous to an assembly line of, e.g., automobiles. In the present section, 

we shall consider rules to be used in metaprogram transformations, when we want to change or to optimize 

program functionality. In the examples that follow, we shall use some of the rules introduced earlier as well 

as some others that we are going to formalize in Sec. 9.5.3. Let us start with an example of two obviously 

 

86 In the denotational model described by M. Gordon in [53] array-variables or indexed-variables are admitted on the 
cost of a rather substantial complication of the model by distinguishing between left-values of expressions (locations) 
and right-values of expressions (values). 
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correct metaprograms, where we assume that nnint is a predefined type of non-negative integers. Since all our 

variables will be yokeless, we shall skip for simplicity the phrase ”with TT“. 

pre x,n is nnint : 
 x := 0; 
   while (x+1)2 ≤ n 
     do 
         x := x+1 
     od 
post x = isrt(n) 

pre x,n,m is nnint 
  x := 0; 
   while (x+1)*m ≤ n 
 do 
      x := x+1 
 od 
post x = iqt(n,m) 

The first program computes an integer square root denoted by isrt(n), the other — an integer quotient denoted 

by iqt(n). Each of these metaprograms is searching number-by-number through the set of nonnegative integers 

in seeking the expected result. Returning to our automotive metaphor, we may say that both metaprograms 

are driven by the same while-engine: 

P1: pre x,k is nnint: 
x := 0; 
while x+1 ≤ k 
do 

x := x+1 
od 

post x = k  

We can use this universal engine to drive two different “appliances”: an integer square root, or an integer 

quotient. In each of these cases, we change the functionality of a program but preserve its correctness. Let us 

show a simple universal method that can justify the correctness of the resulting metaprogram.  

First observe that the correctness of P1 implies the correctness of P2, where we introduce an assertion 

block (Sec. 9.2.6) including while instruction, and where k has been replaced by isrt(n): 

P2: pre x,n is nnint : 
x := 0; 
asr x,n is nnint in 

while x+1 ≤ isrt(n) 
do  

x := x+1 
od 

rsa 
post x = isrt(n) 

So far, our metaprogram looks a bit pointless since it uses isrt(n) to compute it. We shall, therefore, eliminate 

that expression from the programming layer basing on a strong equivalence87: 

x+1 ≤ isrt(n) ≡ (x+1)2 ≤ n whenever x,n is nnint 

and applying Lemma 9.4.2-4 (Sec. 9.4.2), which allows replacing a boolean expression by a strongly 

equivalent one. In our case, this equivalence holds only in the context specified by the whenever clause, and 

this context is assured within the our assertion block. 

As a result of the described transformation, we end up with a final metaprogram P3 where the assertion 

(now not necessary) has been removed. 

P3: pre x,n is nnint : 
x := 0; 
while (x+1)2 ≤ n 

 

87 This equivalence may be formally proved on the ground of the following definition: isrt(n) is the unique integer k such 
that k2 ≤ n < (k+1)2. 
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do 
x := x+1 

od 
post x = isrt(n) 

The instruction of the derived metaprogram does not refer to isrt(n) anymore, and therefore may be said to be 

“more practical” than P2. 

Still, our program is very slow. If we want to speed it up, we have to install a “faster engine” to drive it. 

Let us start from the construction of a universal searching engine for “target integers” in a logarithmic time.  

Let po2.k denote a condition which is satisfied if k is a nonnegative power of 2, i.e., if there exists a 

nonnegative m such that: 

k = 2m 

Let mag.k (the magnitude of k) denote a function with values in the set of powers of  2 such that 

mag.k ≤ k < 2*mag.k 

For instance, mag.11 = 23 since 

23 ≤ 11 < 24 

Now, it is easy to prove the total correctness of the two following metaprograms: 

Q1: pre x,k,z is nnint : 
z := 1; 
asr x,k,z is nnint and po2.z in 

while z ≤ 2*mag.k do z:=z*2 od 
rsa 

post x,k,z is nnint and z = 2*mag.k 

 and 

 Q2: pre x,k,z is nnint and z = 2*mag.k: 
   x := 0; 
   while z > 1  
    do  
     z := z/2; 
     if x+z ≤ k then x:=x+z else skip-i fi 
    od 
  post x = k and z = 1 

The first metaprogram computes the successive powers of 2 until it reaches 2*mag.k, and the second returns 

from 2*mag.k to 1 through successive powers 2m and on its way summarises these powers of 2 that 

correspond to 1 in the binary representations of k. For instance, since 

11 = 0*16 + 1*8 + 0*4 + 1*2 + 1*1 

the second metaprogram, while given 2*mag.11 = 16, will perform the following summation 

8 + 2 + 1 = 11. 

In this way, the target value of k is reconstructed in logarithmic time, compared to a linear time of metaprogram 

P3. Now observe that the following metacondition is true: 

z ≤ mag.k  ≡  z ≤ k whenever x,n,z is nnint and po2.z 

Due to this equivalence, we can replace the boolean expression in while of the first metaprogram by the 

strongly equivalent expression z ≤ k. If we join both metaprograms on the ground of Rule 9.4.2-5, we get our 

target metaprogram that finds the value of k in logarithmic time. In the same step, we move the initialization 

of x at the beginning of the metaprogram. 

Q3: pre z, x, k is nnint : 
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z := 1; 
x := 0; 
asr x,k,z is nnint and po2.z in 

while z ≤ k do z:=2*z od; 
 while z > 1  
  do  
   z := z/2; 
   if x+z ≤ k then x:=x+z fi 
  od 
rsa 

post x = k and z = 1 

Here and in the sequel   

if vex then ins fi  

means  

if vex then ins else skip-i fi 

If in Q3 we replace the expression k by the expression isrt(n), then we have a program that computes isrt(n) but 

refers to it. We eliminate isrt(n) by using two strong conditional equivalences: 

z ≤ isrt(n)  ≡  z2 ≤ n    whenever z, n is nnint 
x+z ≤ isrt(n) ≡  (x+z)2 ≤ n  whenever z, x, n is nnint 

In this way we get 

Q4: pre z, x, n is nnint: 
z := 1; 
x := 0; 
asr x,k,z is nnint and po2.z in 

while z2 ≤ n do z:=2*z od ; 
while z > 1  

  do  
   z := z/2; 
   if (x+z)2 ≤ n then x:=x+z fi 
  od 
rsa  

post x = isrt(n) and z = 1 

Now we shall time-optimize our program by restricting the number of performed operations. Let us start from 

the observation that in each run of the first loop, the program recalculates the value of  z2, which is not optimal. 

To speed up Q4 we introduce a new variable q, and we enrich our program in such a way that the condition 

q=z2 is always satisfied. Such a q will be called a register identifier and z2 — a register expression. This 

technique is discussed in details in Sec. 9.5.3.  

Q5: pre z, x, n, q is nnint:  
z := 1; 
x := 0; 
q := 1; 
asr z, x, n is nnint and po2.z and q = z2 rsa 

while q ≤ n  
do  

off z:=2*z; q:=4*q ffo 
od 

while z > 1  
do  

off z:=z/2; q:=q/4 ffo 
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if x2+2*x*z+q ≤ n then x:=x+z fi 
od 

rsa 
post x=isrt(n) and z = 1 and q=z2  

Note that the double-use of off-ffo is necessary since each time when the first assignment destroys the 

satisfaction of q=z2, the second recovers it. For better readability of our program we do not “quote” the 

assertion in the off-ffo instruction assuming that it is defined by the context. Now we proceed to further 

transformations: 

1. we use the equivalence  z>1   ≡   q>1 whenever (z>0 and q=z2) to modify boolean expression in the 

second loop, 

2. we introduce two new variables y and p with the conditions y = n-x2 and p = x*z, 

3. we use the equivalence x2 + 2*x*z + q ≤ n   ≡   2*p+q ≤ y whenever (y=n-x2 and p=x*z) 

Using the corresponding transformations, we get the following program 

Q6: pre z, x, n, q, y, p is nnint: 
   z := 1; 
   x := 0; 
   q := 1; 
   asr z, x, n is nnint and q = z2 in 
    while q ≤ n  
     do  
      off z:=2*z; q:=4*q ffo 
       od 
    y := n; 
    p := 0; 
    asr y=n-x2 and p = x*z in 

while q > 1  
do  

off z:=z/2; q:=q/4; p:=p/2; ffo 
if 2*p+q ≤ y then x:=x+z; p:=p+q; y:=y-2p-q fi 

od 
rsa 

rsa  
post x=isrt(n) and z=1 and q=z2 and y=n-x2 and p=x*z  

Contrary to the former introduction of a new variable which was clearly justified, now it not quite clear why 

p and y have been introduced. The answer follows from a well-known truth that in programming, like in 

playing chase, we sometimes have to predict a few moves in advance. These moves are shown a little later.  

In the next transformation, we prepare our metaprogram for the removal of variable z. For that sake, we 

perform the following changes: 

1. we apply the equivalence  q=z2      isrt(q)=z whenever z > 0 to change the assertion, 

2. we use the condition isrt(q) = z to replace z by isrt(q) everywhere except the left-hand side of the 

assignment, 

3. we make obvious changes based on the equality z=1. 

The resulting metaprogram is the following: 

Q7: pre z, x, n, q, y, p is nnint: 
   z := 1; 
   x := 0; 

q := 1; 
   asr z, x, n is nnint and isrt(q)=z in 
    while q ≤ n   
     do  
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      off z:=2*isrt(q); q:=4*q ffo 
       od 
    y := n; 
    p := 0; 
    asr y = n-x2 and p = x*isrt(q) in 
     while q > 1  
      do  
       off z:=isrt(q)/2; q:=q/4; p:=p/2 ffo 
       if 2*p+q ≤ y then x:=x+isrt(q); p:=p+q; y:=y-2p-q fi 
      od 
    rsa   
   rsa  
  post x=isrt(n) and z=1 and q=1 and p=x and y=n-x2  

Now observe that in Q7 the variable z does not appear neither in boolean expressions nor on the right-hand 

sides of assignment that do not change z. Since we do not care about the terminal value of z, we can remove 

that variable from our metaprogram together with the corresponding assignment (general rule will be described 

in Sec. 9.5.1). In this way we get: 

Q8: pre x, n, q, y, p is nnint : 
   q := 1; 
   x := 0; 
   asr x, n is nnint in 
    while q ≤ n  
     do  
      q:=4*q 
       od 
    y := n; 
    p := 0; 
    asr y = n-x2 and p = x*isrt(q) in 
     while q > 1  
      do  
       off q:=q/4; p:=p/2 ffo 
       if 2*p+q≤y then x:=x+isrt(q); p:=p+q; y:=y-2p-q fi 
      od 
    rsa   
   rsa  
  post x=isrt(n) and q=1 and p=x and y=n-x2  

Now we use the equivalence 

x=isrt(n) ≡  p=isrt(n) whenever p=x 

to modify the postcondition which makes variable x not necessary anymore. Therefore, we can remove it with 

all expressions, and assertions, where it appears.  

Q9: pre n, q, y, p is nnint: 
   q := 1; 
   while q ≤ n do q:=4*q od 
    y := n; 
    p := 0; 
    while q > 1  
     do  
      if 2*p+q≤y then p:=p+q; y:=y-2p-q fi 
     od 
  post p=isrt(n) and q=1 

In the last step we replace the instruction   
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p:=p/2; if 2*p+q≤y then p:=p+q; y:=y-2p-q else x:=x fi 

by an equivalent instruction 

if p+q≤y then p:=p/2+q; y:=y-p-q else p:=p/2 fi 

As a result, we get the final version of our metaprogram: 

Q10: pre n, q, y, p is nnint : 
    q := 1; 
    while q ≤ n do q:=4*q od 
    y := n; 
    p := 0; 

while q > 1  
do  

q:=q/4;  
if p+q≤y then p:=p/2+q; y:=y-p-q else p:=p/2 fi 

od  
post p = isrt(n) 

This program was written by a well-known Norwegian computer-scientist Ole-Johan Dahl in 1970 to be 

applied in a microprogrammed arithmetical unit of a computer. It is very time-efficient since in a binary 

arithmetic the multiplications and divisions by 2 or 4, correspond to simple shifts left or right respectively of 

binary words. And except shifts it uses only addition and subtraction which are also time inexpensive. In the 

days when microprocessors were not very fast such optimization was worth the effort.  

We do not know in what way Dahl has built this program but we may suppose that he performed an 

optimisation similar to ours, although without formalised rules. 

Our example shows a certain specific approach to developing some programs with while-loops by building 

a program in three steps: 

1. writing a program-engine that searches through a specific space of data, 

2. installing an appliance on that engine which implements the expected functionality, 

3. optimizing the program. 

As we are going to see in Sec. 9.5.1, our technique may also be used in changing the types of data elaborated 

by a program.  

9.5.2 Changing the types of data 

The technique of  register identifiers may be also used in the replacement of one data-type by another one. In 

this section we show how to transform metaprogram Q10 from Sec. 9.5.1 into a metaprogram that operates 

on binary representations of positive integers. Let  

bin : Binary = {(0)} | {(1)} © {(0), (1)}c*  

be the set of binary representations of integers called binary words, and let 

int : NnInt = {0, 1, 2,…} 

be the set of non-negative integers. We shall use the following functions and relations defined on binary words: 

sl : Binary ⟼ Binary                               shift left 
sl.bin =  
 bin = (0) ➔ (0) 
 true   ➔ bin © (0) 

sr : Binary ⟼ Binary                             shift right 

sr.bin =  
 bin = (0) ➔ (0) 
 true   ➔ pop.bin 
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+ : Binary ⟼ Binary                               addition 

− : Binary ⟼ Binary                               subtraction 

< : Binary ⟼ {tt, ff}                                  less 

≤ : Binary ⟼ {tt, ff}                                 less or equal 

The addition and the subtraction of binary words are denoted by the same symbols as for numbers and we 

assume that they are defined in such a way that the equations (5) and (6) below are satisfied. The orderings 

are lexicographic and again correspond to their numeric counterparts. 

b2n : Binary ⟼ NnInt                  binary to number; conversion function 

n2b : NnInt ⟼ Binary                  number to binary; conversion function 

All these functions and relations are defined in such a way that they satisfy the following equations: 

(1) b2n.(n2b.lic)     = int  
(2) n2b.(b2n.bin)     = bin 
(3) n2b.(int*2)      = sl.(n2b.int) 
(4) n2b.(int/2)      = sr.(n2b.int)       where „/” denotes the integer part of division 

(5) n2b.(int1 + int2)    = n2b.int1 + n2b.int2 
(6) n2b.(int1 − int2)    = n2b.int1 − n2b.int2 
(7) n2b.int1 < n2b.int2  iff    int1 < int2 
(8) n2b.int1 ≤ n2b.int2  iff    int1 ≤ int2 

Now, we transform metaprogram Q10 by introducing to it three new variables and three corresponding 

register-conditions: 

Q = n2b(q) 
Y = n2b(y) 
P = n2b(p) 

We assume that a type binary has been defined in our language. We introduce the assertions into Q10 and we 

shift all initialisations to the beginning of our new metaprogram: 

Q11:  pre n, q, y, p is nnint and Q, Y, P is binary and n ≥ 1 
    q := 1; Q := (1); 
    y := n; Y := n2b(n); 
    p := 0; P := (0); 
    asr Q = n2b(q) and Y = n2b(y) and P = n2b(p) in 
    while q ≤ n  

do  
off q:=4*q ; Q = sl(sl(Q)) ffo  

od 
    while q > 1    

do  
off q:=q/4; p:=p/2;  
Q:=sr(sr(Q)); P:=sr(P); ffo 
if p+q≤y  

then off p:=p/2+q; y:=y-2p-q; P:=sr(P)+Q; Y:=Y-sl(P)-Q ffo 
else off p:=p/2; P:=sr(P) ffo 

fi 
od 

rsa  
post p = isrt(n) and q = 1  

Now we use four conditional equivalences in order to replace boolean numeric expressions by boolean binary 

ones: 

q ≤ n   ≡  Q ≤ n2b(n)   whenever Q=n2b(q) 
q > 1   ≡  (1) < Q    whenever Q=n2b(q) 
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p+q ≤ y  ≡  P+Q ≤ Y     whenever Q=n2b(q) and Y=n2b(y) and P=n2b(p) 
p=isrt(n)  ≡  P=n2b(isrt(n))  whenever P=isrt(p) 

Next we remove from our metaprogram all numeric variables except n with the corresponding assignments 

and the assertion block. Since this block reaches the end of the metaprogram, we can modify the postcondition 

in an appropriate way. 

Q12: pre n ≥ 1 and Q, Y, P is binary 
   Q := (1); 
   Y := n2b(n); 

P := (0); 
while Q ≤ N do Q = sl(sl(Q)) od; 
while (1) < Q  

do  
Q:=sr(sr(Q)); P:=sr(P) 
if P+Q≤Y  

then P:=sr(P)+Q; Y:=Y-sl(P)-Q 
else P:=sr(P) 

fi 
od 

post P = n2b(isrt(n)) and Q = (1) 

9.5.3 Adding a register identifier 

This section is devoted to the transformation of metaprograms by adding to them a new identifier ide-r that 

satisfies an assertion of the form: 

ide-r = vex-r.  

Such transformations ware applied in Sec. 9.5.1 in passing from Q4 to Q5 and in Sec. 9.5.2 in passing from 

Q10 to Q11. 

An identifier ide-r that satisfies the condition ide-r = vex-r in a certain range is called a register-identifier 

or just a register; the expression vex-r is called a register-expression and the condition ide-r = vex-r ― a 

register-condition. 

Let us start from an obvious generalization of the meaning of @ (Sec. 9.2.2) which now will compose 

instructions not only with conditions but also with value expressions: 

[ sin @ vex ] = [sin] ● Sde.[vex] 

Let’s consider a metaprogram that we assume to be correct: 

P:  pre prc 
   sin-h;                            head (possibly trivial) 

   asr con rsa ;   

   asr con in ins ; rsa 
sin-t                               tail (possibly trivial) 

post poc 

Let ide-r be an identifier which does not appear in P, and let vex-r be a value expression such that  

pre con : ide-r := vex-r post TT 

which simply means that con guarantees the execution of ide-r := vex-r without an error or looping. Under 

these assumptions a transformation that enriches P by introducing ide-r with a register-condition  

ide-r = vex-r  

yields a metaprogram: 

Q:  pre prc and ide-r is tex 
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sin-h ;  
   ide-r := vex-r ; 
   asr con and ide-r = vex-r in $(sin, ide-r = vex-r) rsa 

sin-t 
post poc  

where $(sin, ide-r = vex-r) denotes such an enrichment of sin which makes Q correct, provided that P was 

correct. The assertion asr con rsa has been dropped from Q (although we could have left it there), since it 

only served to guarantee, that in its context the value of vex-r was defined.  

The syntactic operation $ is defined by structural induction, wrt the structure of sin. Let us start from sin 
which is an assignment 

ide := vex 

where ide is different from ide-r, since we have assumed that ide-r does not appear in P.  

If ide does not appear in vex-r, then the execution of this assignment does not cause any change in the 

value of vex-r, and therefore we do not need to add any actualization.  

If, however, this is not the case, then directly after ide:=vex, we have to add an assignment which recovers 

the satisfaction of the condition ide-r = vex-r. In such a case 

$(ide := vex , ide-r = vex-r) = off ide := vex; ide-r := vex-r ffo 

where equality sign ‘=’ denotes the equality of syntactic elements. An off-clause is necessary here since ide 
appears in vex-r. Consequently, the alteration of the value of ide may cause the alteration of the value of vex-
r and the falsification of our condition. In the case of the transformation of Q4 to Q5 with a register condition 

q=z2 this has led to the enrichment of 

asr q=z2 rsa ; z:=2*z 

into: 

asr q=z2 rsa ; off z:=2*z ; q:=z2 ffo 

The assertion has been left in the resulting instruction since we shall need it a little later. Now, our instruction 

may be changed into an equivalent one (note the inverse order of assignments): 

asr q=z2 rsa ; off q:=((z:=2*z) @ z2) ; z:=2*z ffo 

In this instruction, we can eliminate @, by transforming the expression (z:=2*z) @ z2 to a standard form: 

asr q=z2 rsa ; off q:=4*z2 ; z:=2*z ffo 

Now, since the assertion q=z2 holds “just before” the assignment q:=z2, we can replace our instruction by: 

asr q=z2 rsa ; off q:=4*q ; z:=2*z ffo 

which makes the modification of q independent of z, and therefore — in our example — allows for the 

elimination of z from the metaprogram. In the general case, these transformations are as follows. First the 

instruction 

off ide:=vex ; ide-r:=vex-r ffo 

is replaced by an equivalent one 

off ide-r := ((ide := vex) @ vex-r) ; ide := vex  ffo 

Further on, the expression (( ide := vex ) @ vex-r ) is transformed to a standard form, and then we try to change 

it is such a way that the identifier ide can be eliminated due to the register-condition ide-r=vex-r. This action 

completes the transformation. 

The second “atomic” case to be investigated is a procedure call: 

call ide(val acp-v ref acp-r) 
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Let us assume that our procedure call appears in a program in the same context as the assignment in the former 

case. We again have two subcases to be considered. 

If none of the actual referential parameters appears in vex-r, then we keep the instruction unchanged. In 

the opposite case, we replace it with the instruction 

off call ide (ref acp-r val acp-v); ide-r := vex-r ffo. 

This completes the first step of structural instruction. The remaining steps are rather obvious: 

$((ide-1 ; ide-2), ide-r=vex-r) =  
$(ide-1, ide-r=vex-r) ; $(ide-2, ide-r = vex-r) 

$(if vex-b then sin-1 else sin-2 fi, ide-r = vex-r)  =  
if vex-b then $(sin-1, ide-r = vex-r) else $(sin-1, ide-r = vex-r) fi 

$(while vex-b do sin od, ide-r = vex-r) =  
while vex-b do $(sin, ide-r = vex-r) od 

In short, after each assignment or a procedure call that changes the value of a register condition, we add a 

recovering assignment. The generalization of $ on specinstruction is rather evident. 

In the end, let us point out a methodological difference between @ and $. The former is a character in the 

syntax of Lingua-V, and on the denotational side corresponds to a sequential composition of an instruction 

denotation with a data-expression denotation. Therefore: 

Sde.[sin @ vex] = Sin.[sin] ● Sde.[vex] 

In turn, $ is a constructor of syntaxes (from the level of MetaSoft) 

$ : Instruction x RegisterCondition ⟼ Instruction 

where 

RegisterCondition = Identifier = ValExp88 

9.6 Preliminary remarks about user interfaces for our model 

9.6.1 Computer-aided program development 

On a theoretical ground, our method of the development of correct metaprograms offers a collection of 

mathematical tools dedicated to developing and proving metaprograms, i.e., theorems of the form: 

pre prc : spr post poc. 

These tools currently includes three mutually including languages described in Sec. 9.1 pus a library of 

program-construction rules. 

It is rather evident that the use of our tools in practice requires an assistance of a software system. Below 

we share some very preliminary thoughts about such a system. In our opinion it might consist of three main 

modules: 

1. an intelligent editor supporting the writing of metaprograms in Lingua-V, 

2. a dedicated theorem-prover supporting the application of program-construction rules, 

3. an implementation of Lingua, i.e., a parser and an interpreter or compiler.   

The editor should support two types of tasks:  

1. keeping derived metaprograms syntactically correct, 

 

88 Notice that the first sign of the equality belongs to MetaSoft and denotes the equality of formal languages, whereas 

the second — typed in Arial Narrow — is a character in the syntax of Lingua.  
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2. keeping derived metaprograms statically correct89, e.g., no identifier should be declared twice in one 

program, or actual parameters of a procedure should be statically compatible with formal parameters. 

The dedicated theorem-prover should assist programmers in: 

1. proving metaimplications appearing above the lines in program-construction rules, 

2. keeping and updating a library of currently proved theorems. 

In turn the library of theorems should include the following sublibraries: 

1. a library of system-dependent theorems: 

a. basic theorems about data, values, types and denotations appearing in the model of Lingua-V, 

b. currently proved program-construction rules, 

c. currently proved concrete correct metaprograms, 

2. a library of program-dependent theorems for the currently developed program: 

a. perpetual conditions in the current program, 

b. hereditary conditions associated with current cuts of this programs, 

Whereas part 1. of this library would be modified only occasionally, part 2. must be updated in each step of 

program development. 

As we pointed out in Sec. 9.4.1, the development of a metaprogram may be split into a sequence of steps. 

In each step, given some earlier developed metaprograms we create a new metaprogram by means of one of 

our construction rules. The application of a rule may require proving some “local lemmas” required by the 

rule, e.g., a metaimplication: 

con1  con2. 

Such a metaimplication will be always proved in the context of the current content of our library, which 

formally means that our prover will prove the truth of the following metaformula (cf. Sec. 9.3.2): 

con1  con2 whenever imm-con and per-con and her-con 

where 

imm-con is the conjunction of all immunizing condition from part 1.a of the library, 

per-con  is the conjunction of all perpetual conditions from part 2.a of the library, 

her-con  is the conjunction of all hereditary conditions from part 2.b of the library.  

Similarly, whenever a programmer will develop a metaprogram of the form 

pre prc: 
 spr 
post poc 

the prover will elaborate 

pre prc and imm-con and per-con and her-con : 
 spr 
post poc and imm-con and per-con and her-con 

In each step of program development the part 2. of the library may be updated.  

9.6.2 Computer-aided language design 

The module of supporting the design of programming languages in our framework might include the following 

components: 

1. An intelligent editor supporting the writing of the definitions of the algebra of denotations: 

 

89 This concept is related to so called “static semantics” that describes such properties of syntax that can’t be described 
by grammars and therefore can’t be checked by parsers.  
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a. the carriers of the algebra, i.e., the denotational domains; here the editor might check if domain 

equations do not include a not acceptable recursion, 

b. the constructors of the algebra. 

2. A system supporting the syntax design: 

a. a generator of equational grammars of abstract syntax for given definitions of constructors from 

1.b, 

b. a system supporting the development of an equational grammar of concrete syntax out of 

abstract syntax,  

c. a system supporting the generation of an equational grammar of colloquial syntax out of 

concrete syntax, 

d. a system supporting the generation of the definition of a restoring transformation. 

3. A system supporting the writing of a definition of semantics. 

4. A system supporting the development of a parser of the designed language out of the definition of its 

syntax. 

5. A system supporting the development of an interpreter of the designed language out of the definition 

of its syntax and semantics. 

6. A system supporting the development of a compiler of the designed language out of the definition of 

its syntax and semantics. 

Although the tasks of writing a programmer’s interface and a language designer’s interface are in principle  

independent, one may think of two possible scenarios of building them: 

1. a (first) version of Lingua is developed without using an interface of a language designer and the latter 

is written in Lingua,  

2. a language-designer interface is written in one of existing languages, and later the full definition of 

Lingua along with its implementation is developed in this system.  
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